|I 1 I >

= |How Euler Did It

> by Ed Sandifer

Basdl Problem with Integrals

March, 2004

Euler’sbrilliant 1734 solution to the Basel problem, to find the value of the series
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1+—+—+—+—+—+etc. [E41] brought him great fame, but it also depended on some assumptions that are rather
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0, so Euler asserts that they describe the same function. Euler is correct that they describe the same function, but these
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difficult to justify. In particular, at akey point in the solution, Euler notes that the function
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reasons are insufficient to guarantee it. For example, the function € —— also has the same roots and the same val ue at x
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= 0, but it isadifferent function. This seemsto be amodern objection, not raised in Euler’ stime.

Nonetheless, Euler seemed to understand that there was something mysterious or incomplete in his explanation of
this step. He wrote some other papers, for example E 61, in which he tried to extend and justify thisinfinite product
technique, but he never got very far with clearing the fog out of the solution.

It is generally assumed that was where Euler left theissue. However, in 1741, he wrote a seldomread paper in
French, published in arather obscure literary journal in which he gives acompletely different solution to the Basel problem,
one that does not depend on the mysteries of infinite products.

Euler begins by asking usto consider acircle of radius 1. Hetakessto be arc length, and takes X =SINs, or,
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equivalently, S=arcsinX. Then, working with differentials as he always does, dS =———= and S= 0O T—
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the left, the antiderivativeis E , and, asx goesfrom 0 to 1, sgoes from O to % , S0 he gets on the | eft ? .

. Heintegratesboth sidesfrom X=0 to X=1. On

Now, he multiplies these together to get SAS =
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Ontheright, Euler divesfearlessly into an intricate series calculation. He writes T = (1- XX) 2 and
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applied the generalized binomial theorem to expand the radical as aninfinite series. He gets
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Thisisabit of atricky step, but it really isthe familiar binomial theorem, that
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inthecase a=XX and N = 7 . If nisapositive integer, then the numerators eventually become zero, and we get afinite

sum, but the theorem is still trueif nisafraction. Euler’'s series convergeswhenever | X|<1. Heintegrates and multiplies
to get that
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He knowsthat if he integrates both sides of this, from x = 0 tox = 1, he will get % . If heintegrates an individual
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term on the right, using integration by parts, he gets
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Since the second term is zero at both endpoints, he can ignore it, and he gets a nice reduction formula. He summarizesthe
integral result with alist:
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So, the integral of the expression above (the one that beginss ds) is
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Substituting the values for the integrals gives
&:14_ 1 N 1 + 1 + 1
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The series on the right is the sum of the reciprocal of the odd squares, tantalizingly close to the Basel problem, and
an easy trick makesit into asolution. Any number isthe product of an odd number and a power of 2. For odd numbers, the

power of 2is 2°. Hence, any sguare is the product of an odd square and a power of 4. So, Euler multiplies this equation by
the sum of the reciprocals of the powers of 4, asfollows:
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and gets
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It isadifferent solution to the Basel problem that does not depend on infinite products. Infact, all it requiresto
meet modern standards of rigor isthat wefill in afew routine steps and notice that afew series are absolutely convergent, so
that we can do things like multiply two different seriestogether, aswe did in the very last step.
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