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It isremarkable that the congtant, p, that relates the radius to the circumference of acirclein the
familiar formula C = 2pr isthe same congtant that relates the radius the arealin the formula A=pr?.
Thisisaspecia property of circles. Ellipses, despite their smilarity to circles, are quite different.
Thereis no easy relationship between the circumference and the area of an dlipse.

On the one hand, if the two semi-radii of an dlipse area and b, then the area of the dlipseis
givenby A=pab. The congant p is the same congtant that works for circles. The area of acircleisa
specid case of this. On the other hand, arc length on an dlipse is adegp and considerably more difficult
question. Aswewill see, the arc length is gven ether by ahard integra or by arather formidable
series. Early work was done by the Italian mathematician Fagnano and the Swede Klingenstierna, but
we will follow Euler’sverson.

Euler worked throughout hislife on integrals involving the arc length of the dlipse. We will
look at his earliest efforts, a paper written in 1732, published in 1738, in which he found a series for the
arc length of aquarter of an lipse. Theresult is part of paper number 28 on the Enestrom index, and is
titled “ Specimen de congtructione aequationum differentialium sine indeterminatarum separetione,” or,
in English, “ Example of the congtruction of a differentia equation without the separation of varigbles”
Asthetitle suggedts, the arc length of the dlipse arises as Euler is
pursuing a problem in differentid equations.

Asdways, we begin with notation. InFig. 1, ac BMC isa T
quarter of an elipse, and other parts are defined as follows: B

AC = a, the mgor axis of the dlipse
BC = b, theminor axis of the dlipse
AT isthetangent tothe dlipsea A
CT cutsthedlipsea M

AM = sisthelength of the arc AM
AT =t

CP=x ¢ PP A

Fig. 1.
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Euler plansto use differentials on this diagram, so he meansthe distance tT and the arc mM to be
very smdl. Also, we are to assume that mp and MP are perpendicular to the axis CA.

Note that Euler usesthe varigble t twice here, once as a point and once asalength. Thiswasa
common practice in the eighteenth century and it often gets confusing.
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We are talking about an dlipse that today we would describe with the equation ﬁz +§ =1.
a

b ,a2_ 2

Euler gives an equivadent form, PM =22 = X and notes that, by similar triangles, tx =b~/a® - ¥
a
. ab
or, equivaently, x = .
B Y +/bb +tt

With abit of work, we can take y = PM and know that the arc length differentid is given by

ds=y1+(y') tofindthat d i Gl GRS Id his between 0 and

S=41+(y') tofindthat ds= . Wecould try to integrate this eenO0and a
ava’®- x*

to find the length of the arc BMA, but Euler and others have learned from experience that this doesn't

work very well. Instead, Euler replaces x with t. Thisgives

ds = bdt/b* + a’tt
(ob+tt)”
Now the arc length BMA istheintegrd of thisfrom Oto ¥.

Before he gets down to the integrd, Euler wants to make one more subgtitution. If you think
about it, the ratio of the axes of an dlipse, a/b tdlsus how much the dlipseislikeacrde. If theratiois
closeto 1, then the dlipse ismore circular. Euler wants, instead, a measure of how different the dlipse

isfrom adirdle. He defines ameasure n by the equation a® =(n +1)b?. Here, when n is closeto zero,
then aiscloseto b and the dlipse is not much different from acircle. If we use thisto replace a with n,
we get

b?dt, (b7 +17) + nt?

ds =
T ey

This doesn't ook like progress, but Euler has a surprise, one that Newton had used over 50 years
earlier. Remember the binomid theorem:
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We usudly usethisfor m a pogtive integer, and, in that case, the numerators in the second
formula eventudly are zero and we get afinite series. Newton showed that the theorem is il true for
fractiond valuesof m, but the result isan infinite series. Euler takes m = %2 and denotes the coefficients

by
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Now he applies the binomia theorem to the radical in the numerator of dsto get

Ant? Bn%* Cn%®
+ +

ey (el el
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0 that

_ bPdt  Abnt’dt  Bb'rft*dt  Cb°rPt® dt
ds = 2, .2 + 2 + 3 + 4 +
b™+t" (b2 +1?)"  (b? +t?)" (b +t?)

S0, the length of the arc AMB will be the integrd of this seriesfrom O to ¥ . Notice how nicdy Euler's
trick got rid of the radical in the denominator, and aso how introducing the term n helps the series
converge rgpidly for smadl vauesof n.

Thefirg term of this series integrates as an arctangent to give b% . Therest of the terms reduce,

asif by magic, to thefirg term using integration by parts. The second term, for example, (ignoring A
and n to make it alittle easier to type) gives

, bt*dt _ 1 bbdt 1 b%
O(bz+t2)2 2Fo+tt 2bb+tt

where in the integration by parts, we took dv :Atz sothat v= 2_ !

(b2 +t2) b’ +t°
Similarly, the third term reduces to the second, and the fourth to the third, and we get, after afew pages
of cadculations,

L Ptidt 18 bPdt 18 bt 1 b*
Q) 24 %ortt” 24bbrtt” 4(bo+1t)’

L P*Pdt _ 136  b’dt 13% bt D& bt 1 bt
0(b2+t2)4 246 b+t 2456 bb+tt 456 (bb+1t)° 6 (bb+1t)

Euler isagenius a such caculations, and he tels us that from this, “the law for the integrds of the
remaning termsis gpparent enough.”



Theinformation Euler needsto find the length of the arc AMB, is hidden in these series. He
pointsout that whent = O or t = ¥, the“agebraic’ terms, that is, the terms outsde the integrand, are dll
zero, so we only have to worry about the integrals themselves. With those swept away, the pattern for
the reduction of the integral becomes clear:

L b?™t?"dt _ 18%6 x.42m- 1) pb
Olb?+t?) " 248 x2m 2

We are amost done. Euler takes e = p_2b . Thislooks odd to us, but Euler had not yet adopted

the convention that the symbol e adways denotes the base for the natural logarithms. Subdtitute these
vauesback intheintegrd of ds, and putting the parameter n and the coefficients A, B, C, etc., back into
the equation, we get

1 18, 1% 13>57 5
AMB = e += An+—— Bn? cn® + Dn* + etc.2.
& 2 24" T 2468 p
If we dso subgtitute for A, B, C, D, we get
158 X7 1><l><3><3>6>n 1x1:353555 7 >’ o
AVIB= eS?L +efc

250 2>Q><4><4 2RAAGXE 230 XA X656x858 ;

Thisis Euler’ sanswer, arather intimidating series. We might want to replace the symbol e with
itsvaue and write it as

pba?[ 1 18xY 1>Q>6>3>5><n 1X1>3X3>6>6 7 n* o)
AMB ="l + +eC.+.
2 & 250 2>Q><4>¢1 2034345656 20 XAX4x6x6:88 a

We can check that, when n=0and a = b = 1, we get the answer we expect, p/2, and that as a
increases, n aso increases, as does the value of the saries, so the answer at least makes sense, even if it
in't as Imple as we might have hoped.

Over the last 270 years, we have learned alot more about arc lengths on dlipses. Euler himself
added a good deal more to the subject, including the so-cdled addition formulafor dliptic integrals.
These arc lengths are the foundation of deep and rich studies of dliptic integrals, dliptic curves and
dliptic functions, with gpplications across a vast spectrum of mathematics, from mechanicsto Wiles
solution of Fermat’s Last Theorem. It dl hasroots in this paper, and the curious fact that arc length for
dlipsesis so much more complicated than it isfor circles.
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