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 Euler didn’t do a lot of geometry.  Most of what he did falls into one of two categories.  One 
category includes papers that were part of now-forgotten research agendas of the 1700’s. Euler would 
usually do several papers on such a topic.  His work on reciprocal trajectories and on the quadrature of 
Lunes both fall into this category.  The other category includes papers that are solitary gems in the field, 
topics Euler visited once, created a masterpiece, and then moved on.  His work on the Euler Line and on 
the so-called Euler Formula (V – E + F = 2, actually two papers) are examples here. 
 
 This month we look at a rare example from a third category of Euler’s geometry, a topic he 
visited once, but the single paper that resulted from that visit is mostly forgotten.  It is a beautiful result 
that I learned from Bill Dunham at a meeting of the Ohio Section of the MAA. Though Euler did not 
bother to mention it, the Pythagorean theorem is an easy corollary of the main result, hence the title of 
this column. 
 
 In 1748 Euler had been in the employ of Frederick II in Berlin for seven years.  He published one 
of his most influential works, the Introductio in analysin infinitorum, often heralded as the world’s first 
precalculus book, though that description is a gross oversimplification.  He finished writing his first 
calculus book, the Institutiones calculi differentialis, though it would not be published until 1755.  He 
“only” published nine books and papers in 1748, but he wrote more than 25.  Most of his papers were 
about astronomy, especially the motions of the moon and planets, and about optics and the tools 
necessary to observe those motions.  Euler’s paper, Variae demonstrationes geometricae, or “Several 
proofs in geometry,” is a bit of an oddball in the midst of all this astronomy.  It is number 135 on 
Eneström’s list of Euler’s works. 
 
 As its title suggests, Variae demonstrationes geometricae presents several results, not all that 
closely related, and not all that new.  First, he solves a fairly simple and not very interesting problem of 
Fermat.  Then he does two theorems in triangle geometry. The first of this pair is the theorem relating 
the area of a triangle to its perimeter and the radius of its inscribed circle.  The second is the theorem 
often known as Heron’s theorem, giving the area of a triangle in terms of the lengths of its three sides.  
He also proves what we sometimes call Brahmagupta’s theorem, giving the area of a quadrilateral 
inscribed in a circle in terms of the four sides of the quadrilateral.  Euler attributes this theorem to one of 
his contemporaries, Philipp Naudé. 
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 Finally, just three pages from the end of this 18-page article, he gets to the theorems that interest 
us today.  Euler refers us to Figure 7 when he 
states the first of these theorems: 
 

Theorem:  Given any convex 
quadrilateral (trapezio) ABCD with diagonals 
AC, BD, if a parallelogram is completed about 
the two sides AB, BC to give the 
parallelogram ABCE, and if the two points D 
and E are joined to form the segment DE, then 
the sum of the squares of the four sides of the 
quadrilateral 2 2 2 2AB BC CD DA+ + +  will be 
greater than the sum of the squares of the 
diagonals 2 2AC BD+  by  the square of the 
segment DE, that is  

 
2 2 2 2 2 2 2AB BC CD DA AC BD DE+ + + = + +  

 
Proof:  First, complete the three points A, B, 
C to form the parallelogram ABCE, as 
suggested in the wording of the theorem, and 
draw the diagonal BE.  Further, construct F so 
that CF is parallel to AD and BF is parallel to 
ED.  Since BC=AE, we get that the triangles CBF and AED are congruent. 
 
 Now, draw the lines AF, DF and EF and look at the two parallelograms ADCF and BDEF with 
diagonals AC, DF and BE, DF respectively.  Euler cites a “property of parallelograms” to tell us that, in 
ADCF we have 

2 2 2 22 2AD CD AC DF+ = +  
and in BDEF we have 

2 2 22 2BD DE BE DF+ = + . 
 This is just an application of the Law of Cosines. We know that angles ADC and DCF are 
supplementary, so their cosines are negatives of one another.  Then the Law of Cosines tells us that 

2 2 2 2 cos( )AC AD CD AD CD ADC= + − ⋅ ⋅ ⋅ .  Meanwhile, 2 2 2 2 cos( )DF AD CD AD DC ADC= + + ⋅ ⋅ ⋅ .  
Add these together to get Euler’s property of parallelograms. 
 Solve each of these equations for 2DF , set the two parts equal to each other and add 2AC  to get 

2 2 2 2 2 22 2 2 2AD CD BD DE AC BE+ = + + −  
 We have one parallelogram left, ABCE, where we know that 

2 2 2 22 2AB BC AC BE+ = + . 
Add this to the last equation to get 

2 2 2 2 2 2 22 2 2 2 2 2 2AD CD AB BC BD DE AC+ + + = + + . 
Divide by two and rearrange a little bit to get 

2 2 2 2 2 2 2AB BC CD DA AC BD DE+ + + = + + , 
as promised.  Q. E. D. 
 
 Euler gives us four corollaries.  The first three are fairly routine.  First, if the quadrilateral is a 
parallelogram, then the interval DE vanishes so the sum of the squares of the sides exactly equals the 
sum of the squares of the diagonals.  This isn’t really fair, since this is exactly the “property of 
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parallelograms” that Euler used to prove the theorem itself.  Euler’s second corollary is that the sum of 
the squares of the sides of a quadrilateral is always greater than or equal to the sum of the squares of the 
diagonals, with equality exactly when the quadrilateral is a parallelogram.   
 
 In Euler’s third corollary he bisects diagonal AC at P and  BD at Q, and draws segment QP.  
Then he shows that this last segment is half the length of DE, and so its square is one fourth of 2DE .  
This is satisfying because it gives us a way 
to avoid using that awkward auxiliary point 
E and to replace it with two points P and Q 
that are more naturally associated with the 
original quadrilateral. 
 
 Substituting 24PQ  for 2DE  in the 
original theorem leads to Euler’s fourth, and 
most interesting corollary, illustrated in 
Figure 8: 
 
Corollary 4:  In any quadrilateral ABCD, if 
its diagonals AC and BD are bisected by 
points P and Q, which are joined by segment 
PQ, then the sum of the squares of the four 
sides, 2 2 2 2AB BC CD DA+ + +  is equal to the sum of the squares of the two diagonals, 2 2AC BD+  plus 
four times the square of the line PQ.  That is to say,  
 

2 2 2 2 2 2 24AB BC CD DA AC BD PQ+ + + = + + . 
 
 Euler stopped here, but we don’t have to.  In the special case that ABCD is a rectangle, besides 
knowing that all four angles are right angles and that opposite sides are equal, we also know that P=Q 
and AC=BD.  Making appropriate substitutions, this tells us that in the right triangle ABC, we have 
 

2 2 2 2 2 2 4 0AB BC AB BC AC AC+ + + = + + ⋅ , 
 
which gives immediately the well known: 
 
Theorem (Euler-Pythagoras): If ABC is a triangle with right angle at B, then 
 

2 2 2AB BC AC+ = . 
 
 In the same volume of the Novi Commentarii as Euler published E-135, his enthusiastic but less 
talented friend George Wolfgang Krafft (1701-1754) an article, Demonstrationes duorum theorematum 
geometricorum, “Proofs of two geometric theorems.”  One of Krafft’s theorems is Euler’s Corollary 4, 
proved in an almost entirely algebraic manner, based on the Law of Cosines.  Today, most of us 
probably find Euler’s geometric method more appealing. But in the 1740’s the fashion in mathematics 
was becoming more and more algebraic, at the expense of geometry.  There is every chance that people 
in Euler’s and Krafft’s time found Krafft’s the more attractive proof. 
 
 We leave the reader with two thoughts.  First, how much of Euler’s work is still true if the 
quadrilateral ABCD is not convex, or is even self-intersecting?   
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The second thought is based on some remarks by Eisso Atzema.  What if the four points A, B, C 
and D are not in a plane, so that they form the vertices of a tetrahedron.  Then ABCD describes a circuit 
on that tetrahedron.  The two edges that the circuit does not use, AC and BD are the segments that are 
the diagonals in the planar case.  How much of Euler’s work survives this excursion into three 
dimensions? 
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