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 In the days before email, mathematics journals, MathFest, MAA Online and annual Joint 
Mathematics Meetings, mathematicians had far fewer ways to communicate.  Finished works would 
appear in books and in a few general scientific and scholarly journals like Acta Eruditorum or the 
Mémoires de l’Academie des Sciences de Berlin.  Euler usually published in the journal of the St. 
Petersburg Academy, Commentarii academiae scientiarum Petropolitanae, or one of its successor 
journals.  
 There are other hidden and informal means of scientific communications that are essential to the 
health of mathematics.  These are the ways we answer questions like “What are you working on?” or 
“What have you discovered that you haven’t published yet?”  or “What would be interesting or useful to 
work on next?”  Within a single department, we get to ask, and sometimes answer these questions 
personally.  To ask them in a larger community, we have eMail and meetings. 
 They couldn’t do that in Euler’s day.  Occasionally, someone would go on a “Grand Tour” and 
visit scientists in several places.  We are only sure that Euler did this once, when he stopped to visit 
Christian Wolff in the 1720’s while moving from Basel to St. Petersburg, though he may have made 
some shorter trips within Germany in the 1740’s and 1750’s.  Many more people traveled to see Euler, 
but it wasn’t enough to sustain a scientific conversation.  
 Instead, they wrote letters.  Over a thousand letters written by Euler survive, and, because he was 
a very well-organized person, over two thousand letters addressed to Euler still exist.  This is why so 
many of Euler’s ideas can be traced to his correspondence.  His interest in number theory, for example, 
began in letters from Goldbach in the 1720’s.  Other ideas first appear in letters to various Bernoullis, to 
Stirling, or to Lagrange.  Only about a thousand of these letters have been published, though a complete 
index is in the Opera Omnia, Series IV-A, volume 1.  Every once in a while, previously unknown letters 
turn up and the list grows a little bit. 
 This month’s column has its origins in one of those letters.  On September 4, 1740, Philip Naudé 
the younger (1684-1747) wrote Euler from Berlin to ask “how many ways can the number 50 be written 
as a sum of seven different positive integers?”  The problem seems to have captured Euler’s 
imagination.  Euler gave his first answer on April 6, 1741, in a paper he read at the weekly meeting of 
the St. Petersburg Academy.  That paper was published ten years later and is number 158 on Eneström’s 
index.  Euler solved the problem in a different way in the Introductio in analysin infinitorum, E101, 
published in 1748, and made more improvements in a paper De partitione numerorum, “On the partition 
of numbers,” E191, written in 1750, published in 1753.  Late in his life, in 1769, he returned to the 
problem in De partione numerorum in partes tam numero quam specie datas, “On the partition of 
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numbers into a given kind or number of parts,” E394, published in 1770.  Readers at the time might have 
been a bit confused by the order of the publications.  The first one written was the second one published. 
 All three of the articles, E158, E191 and E394, are reprinted in the Opera Omnia volumes on 
Number Theory, though we will see that they could just as well been classified as papers on Series and 
put in volumes 14 or 15, or classified as papers on combinatorics and published in volume 7 “Pertaining 
to the theory of combinations and probability.”  
 The solutions given in E158 and E191 are both based on the relations comparing a series, 
a+b+c+etc., the sum of its powers, etc.n n na b c+ + + , and the sum of products of its terms taken 
without repeated factors, first two at a time, ab + ac + bc + ad + bd + cd + etc., then three at a time, 
abc + abd + acd + bcd + abe + etc.  
 The solutions in E394 and in the Introductio, E101, are based on more familiar ideas of 
multiplying polynomials.  We will describe the version given in Chapter XVI of the Introductio, “On the 
Partition of Numbers.” 
 To prepare ourselves for Euler’s ideas, let’s do a simple example.  Let’s ask, what is the 
coefficient of 5x  if we expand ( )( ) ( )3 2 3 4 21 1x x x x x x x+ + + + + + ?  We could answer the question by 

brute force by finding the ninth degree polynomial that results.  On the other hand, since we are only 
asked to find one of the ten coefficients, we can use the addition properties of exponents, and ask how 
the exponent 5 can arise.  We get a product of degree 5 by adding an exponent from the first factor, 0, 1 
or 3, to an exponent from the second factor, 0, 2, 3 or 4, and then adding an exponent from the third 
factor, 1 or 2, and having the resulting sum be 5.  The coefficient of 5x  will be the number of ways of 
forming this sum.  Since there are five ways to do this, (0, 3, 2), (0, 4, 1), (1, 2, 2), (1, 3, 1) and (3, 0, 2). 
the coefficient of 5x  must be 5. 
 Conversely, since the product expands to 2 3 4 5 6 7 8 92 2 4 5 4 3 2x x x x x x x x x+ + + + + + + + , and 
since the coefficient of  5x  is 5, there are 5 ways to form the desired sum.  This is Euler’s basic idea, to 
use the coefficients of polynomials to count things.  It is a remarkably powerful idea, as we shall see. 
 Euler begins by comparing a product of polynomials in two variables, possibly as an infinite 
product, with its expansion into a series.  He supposes that 

( ) ( ) ( ) ( ) 2 3 41 1 1 1 ... 1 ...x z x z x z x z Pz Qz Rz Szα β γ δ+ + + + = + + + + +  

and asks for the values of P, Q, R, etc., in terms of α, β ,γ, etc. 
 He answers his own question and explains that P is the sum of powers etc.x x x xα β γ δ+ + + + .  
Then Q is the sum of the products of powers taken two at a time, R those taken three at a time, etc. 
 There may be coefficients, though.  In P, the coefficient on nx  tells us how many times the 
number n occurs in the sequence α, β ,γ, etc.  In Q, the coefficient tells us how many different ways n 
can be formed as the sum of a pair of numbers from the sequence.  In R, it tells us how many ways it is 
the sum of three numbers from the sequence, and so forth. 
 Got it?  Maybe not.  Let’s do an example.  Euler writes, in Chapter 16 of Book 1 of his 
Introductio [E101], “In order that this may become clearer, let us consider the following infinite 
product.” 

( ) ( ) ( ) ( )( )2 3 4 51 1 1 1 1 ...xz x z x z x z x z+ + + + +  

Euler bravely expands this to get  
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( )
( )

( )
( )

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9

3 6 7 8 9 10 11 12

4 10 11 12 13 14 15 16

5

1 ...

2 2 3 3 4 ...

2 3 4 5 7 ...

2 3 5 6 9 ...

(...) ...

z x x x x x x x x x x

z x x x x x x x

z x x x x x x x

z x x x x x x x

z

+ + + + + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ +

 

 Euler carries the expansion up through 8z  and gives about ten terms of x in each coefficient of 
nz .  It is quite impressive. 

 This series is a wealth of information.  For example, there is a term 4 156z x .  The coefficient 6 
tells that there are 6 ways to write the exponent of x, 15, as the sum of 4, the exponent of z, different 
numbers from the sequence 1, 2, 3, 4, 5, … .  And, indeed, the four ways are (1, 2, 3, 9), (1, 2, 4, 8),  
(1, 2, 5, 7), (1, 3, 4, 7), (1, 3, 5, 6) and (2, 3, 4, 6).  Similarly, there is a term 7 3515z x (Euler includes it, 
but we didn’t).  The coefficient 15 tells us that there are 15 ways to write the number 35 as the sum of 7 
different positive integers. 
 Recall that Philip Naudé had asked to write 50 as the sum of 7 different positive integers, so we 
need only find the coefficient of 7 50z x .  He doesn’t mention this in the Introductio, though he tells us un 
E158 that the required coefficient is 522, and that this is “a most perfect solution to the problem of 
Naudé.”   
 There is even more information in the series.  If we take z = 1 and combine like terms, then the 
coefficient of nx  will be the number of ways to write n as the sum of 1 distinct positive integer, plus the 
number of ways to write it as the sum of 2 of them, plus the number of ways to write it as the sum of 3 
of them, etc.  To say this more directly, the coefficient of nx  is the number of ways to write n as the sum 
of distinct positive integers.  
 Of course, Euler does an example. If z = 1, then the infinite product is  

( ) ( ) ( )( ) ( )2 3 4 51 1 1 1 1 etc.x x x x x− − − − −  

This expands to give 
2 3 4 5 6 7 81 2 2 3 4 5 6 etc.x x x x x x x x+ + + + + + + + +  

Euler points out that the term 86x  tells us that there are 6 ways to write 8 as the sum of distinct 
positive integers, and he lists them: 

8 = 8   8 = 7 + 1  8 = 6 + 2 
8 = 5 + 3  8 = 5 + 2 + 1  8 = 4 + 3 + 1 

 
He takes pains to note that we must count the “sum” 8 = 8. 
 Euler is nowhere near exhausting the idea of using coefficients to count things.  He asks, what if 
we relax the requirement that our summands be distinct, and allow sums like 8 = 3 + 3 + 2?  He tells us 
that “The condition that the numbers be different is eliminated if the product is put into the 
denominator.” This is a bit cryptic.  To clarify it a bit, he asks us to consider the expression 

( ) ( ) ( )( )
1

1 1 1 1 ...x z x z x z x zα β γ δ− − − −
 

The modern mathematician would ask whether or not this expression converges, but as usual, Euler 
trusts his notation, and doesn’t worry about such things. 

The quotient can be expanded into a product of geometric series, which can then be expanded 
again into a series similar to the one he examined earlier.  Euler gives copious details and a good deal of 
generality, but the case that is most interesting is when α, β , γ, δ are 1, 2, 3, 4, etc. (The second most 
interesting case is when they are 1, 3, 5, 7, etc.)  Then the quotient 
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2 2 3 3 4 41
1 z +etc.

1
xz x z x z x

x zα = + + + +
−

  The next quotient, 2 4 2 6 3 8 41
1 z +etc.

1
x z x z x z x

x zβ = + + + +
−

  

Similarly for the infinitely many other quotients.  Again, Euler bravely expands the expression  

( ) ( ) ( ) ( )2 3 4

1
1 1 1 1 etc.zx zx zx zx− − − −

 

into a series 

( )
( )
( )
( )

( )

2 3 4 5 6 7

2 2 3 4 5 6 7 8

3 3 4 5 6 7 8 9

4 4 5 6 7 8 9 10

5

1 ...

2 2 3 3 4 ...

2 3 4 5 7 ...

2 3 5 6 9 ...

... etc.

z x x x x x x x

z x x x x x x x

z x x x x x x x

z x x x x x x x

z

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + +

+ +

 

 
 The coefficients here tell us how many different ways the exponent of x can be written as the 
sum of the number in the exponent of z positive integers.  Euler gives the example, 13 can be written as 
the sum of 5 whole numbers (not necessarily different whole numbers) in 18 different ways because the 
coefficient of 13 5x z  turns out to be 18.  Euler does not list the 18 different ways.   
 Now if we take z = 1, as before, we get 
 

( ) ( ) ( ) ( )
2 3 4 5 6 7

2 3 4

1
1 2 3 5 7 11 15 etc.

1 1 1 1 etc.
x x x x x x x

x x x x
= + + + + + + + +

− − − −
 

The coefficients of this series are called the Partition Numbers, and give the number of ways the 
corresponding exponent can be written as the sum of any number of positive integers.  For example, the 
term 611x  tells us that 6 can be written as a sum in 11 different ways.  Euler lists them for us. 
 From here, paths lead in many directions.  We could look at Euler’s work on the partition 
numbers themselves.  He discovered an amazing recursive relation involving the pentagonal numbers.  
This line of study continued through Ramanujan, who discovered a number of beautiful and astonishing 
properties. 
 Instead of dwelling on this, we will only sketch a few other results and mention a bit about where 
they lead.   

One thing Euler does, but we won’t give details, is to show that the coefficients of the expansion 

( ) ( )
3

3 4 5 6 7 8 9
2

2 2 3 3 4 etc.
1 1

x
x x x x x x x

x x
= + + + + + + +

− −
 

give the number of ways that a number can be written as the sum of two different numbers.  For 
example, 94 x  tells us that there are 4 ways to write 9 as the sum of two different numbers. They are 1+8, 
2+7, 3+6 and 4+5.  Likewise, 83x  corresponds to the sums 1+7, 2+6 and 3+5. 
 Then he shows that the coefficient of nx  in the expansion also gives the number of ways that n-3 
can be given as the sum of 1’s and 2’s.  Here, 83x  tells us that there will be 3 ways to write 8-3=5 as a 
sum of 1’s and 2’s.  They are 1+1+1+1+1, 1+1+1+2 and 1+2+2.  Note that it is not necessary to include 
both 1’s and 2’s, so 1+1+1+1+1 is an admissible sum. 
 Euler also showed how to find similar relations between the number of sums of k different 
numbers and the number of sums involving only the numbers 1 through k.  He did all of his analysis 
algebraically. 
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 We could also explore the other ways that Euler used the tools of generating functions that he 
first developed in his study of partitions in E158. 
 In 1878, J. J. Sylvester, then teaching at Johns Hopkins, and his student Fabian Franklin, 
working with a group of other graduate students at Hopkins, gave a wonderful graphical proof of the 
same result, as well as a number of new results.  Their paper was based on the insight that arrangements 
of 22 stars like the following, 
 
 * * * * * * 
 * * * * * * 
 * * * * 
 
can be viewed as giving the number 22 as a sum of three numbers, 6 + 6 + 4, or as a sum involving only 
numbers 1 through 3, here 3 + 3 + 3 + 3 + 2 + 2.   
 Rather than follow these paths now, we will leave them for another column. 
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