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Many number theorists think that the Quadratic Reciprocity Theorem isthe most beautiful
theorem in dl of mathematics. It is said to be Gauss s favorite theorem. Though Euler did not discover
quadratic reciprocity, nor did he prove the theorem, he gathered the observationa evidence that later
guided Legendre and Gauss, so that they would know what to try to prove, and he did manage to prove
some prdiminary results. In this month’s column, we will look at Euler’ sfirg resultsin the subject,
results that first gppeared in aletter to Christian Goldbach dated August 28, 1742, [J+W] and published
in 1751 [E164] in the 1744/46 volume of the journa of the St. Petersburg Academy. Harold Edwards
wrote about this letter and article in 1983 in afine paper in Mathematics Magazine, [Ed] and he saw the
articlejust a bit differently.

Before we turn to Euler’ s article, we should remind readers what the Quadratic Reciprocity
Theorem tellsus. It gives usaway to find when anumber a is a perfect square modulo a prime number
g. For example, 1 and 4 are perfect squares modulo 7, but, some find it surprising that 2 is so a perfect

square, since 3° =9° 2(mod7) . Intherea numbers, J2 isirrationd, but in the integers modulo 7,

J2=3. ugasinthered numbers, non-zero numbers that have square roots have two of them, and the
other square root of 2, modulo 7, is4. The other three non-zero numbers modulo 7 are 3, 5 and 6, and
none of them are perfect squares. Euler later proved that modulo any odd prime g, exactly hdf of the
numbers between 0 and p will be perfect squares and haf of them will not. The onesthat are perfect
sguares are called quadratic residues, and the ones that aren't are called quadratic non-residues.

Legendre later introduced a notation to smplify discussons. [M] The so-cdled Legendre
symbol, is defined for a prime number g and another integer a not divisble by g, asfollows:

aa0_1+1 ifaisaperfect square moduloq
8q5_|1-1 if a isnot a perfect square modulo g

The symbol is sometimes written as(a | q ), and is a'so sometimes defined asbeing zero if
dividesa.

Euler was thefirgt to prove that the product of two quadratic residues or of two quadratic non
residues would be a quadratic residue, but that the product of a residue and anon-residue would be a
non-resdue. Thisfact trandatesinto Legendre symbols as



aab0_ ambeb0
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Because of this fact, we can confine our inquiry to the cases when a isa prime number, sinceif a
is not prime, we can factor a and consider the problem afactor at atime.

The prime number 2 is sometimes a problem case in number theory, being the only even prime
number, and often we must dedl with it separately. This formula covers the situation:

a6 _1+1 if g=1,7(mod8)
§qp 1-1 if g=3,5(mod8)

Euler knew the fact behind this formula, but he apparently never gave a proof of the fact.

The “exponent” notation given in the second line compacts the notation and smplifies

cdculation, but in my mind it obscures the beauty of the result. Severd theorems about quadratic
residues have such exponentid forms as well asthe “modulo” forms| prefer.

We are now ready to state the Quadratic Reciprocity Theorem, which relates the Legendre

symbols and & 0 -, asfollows:
8q 2 Po

QUADRATIC RECIPROCITY THEOREM: If p and q are distinct, odd primes, then
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Aswe mentioned above, gpparently Legendre first proved this, and Gauss gave severd proofs.
Severd sources say that Euler stated the theorem in 1783, the year that he died, but nobody seems to
give an explicit citation. We will leave that for another column. Here, our purpose isto see how much
quadratic reciprocity Euler knew in 1742 when he wrote the letter to Goldbach, and in 1745 when he
wrote E 164.

Euler' s paper Theoremata circa divisors numerorum in hac forma paa + gbb contentorum,
“Theorems about divisors of numbers of the form paa £ gbb, number 164 in Enestrom’ s index, was only
Euler’ stenth paper in number theory. He eventualy wrote 96 papersin the area, but it is a measure of

the rdatively low esteemn in which number theory was held & the time that half of those papers were
only published posthumoudly.



This particular paper has a very digtinctive form, different from any other paper that Euler ever
wrote. It does not have the usud “paragraph” structure, but instead isahuge list of 59 “theorems,”
amogt dwayswithout proof or discussion, and another 17 “annotationes,” rather like remarks, all

preceded by asingle short paragraph. Here is an image of part of the first page of the paper:

THEOREMATA

CIRCA DIVISORES NVMERORVM IN HAC
FORMA paa--qbh CONTENTORVM.

In fequentibus theorematis' litterae 4 et & defignant nu-
mheros quoscunque integros,. primos inter € ,- fen, qui prae~
ter vhititem nullom alinme habeant diuiforem: communem;:

| - Theorema 1.

Nnmcrﬂrum in hac forma’ @a -5 coutentoruny diui-
.\ fores primi: omnes: funt: vel- 2 vel! huivs formae 4

~f~ 1 numeri. '

This can be trandated as follows;

“In the fdlowing theorems, the letters a and b designate arbitrary
relatively prime integers, that is, they have only 1 as a common divisor.

“Theorem . All of the prime divisors of numbers contained in the form
aa + bb are @ther the number 2 or are numbers of theform4m + 1.”

We repest, Euler gives no proof of Theorem 1 or any of the other theoremsin this paper.

After this paragraph and theorem, Euler gives his “theorems’ in groups of three. Each triad
begins with a theorem giving the forms of prime divisors of theform aa + pbb. The second theorem
assartsthat dl of those prime divisors are themsaves numbers of thisform, and the third theorem is
aways the contragpositive of the firdt.

He begins with properties of sums of two square numbers, that is numbers that can be written in
theform aa + bb. These propertiesthat are well known now, and had been noted by Fermat amost a
hundred years earlier, but in 1742 number theory was not widely studied, and probably few people other
than Euler and Goldbach knew them. Hisfirst triad of theorems continues:

“Theorem 2. All prime numbers of the form 4n + 1 in turn are contained
in numbers of this form.



“Theorem3:  Thus the sum of two squares, that is numbers of the form
aa + bb are never divided by any number of theform 4m—1."

Note that Theorem 3 would not be true without the condition in the paragraph at the beginning of
the paper that a and b mugt be relatively prime.

Euler does not mean these as “theorems’ in the modern sense of theword. Rather, they are
datements heis certain are true, having examined alarge number of cases. Almost 20 yearslaer ina
paper tittled Demonstratio theorematis Fermatiani omnem numerum primum formae 4n + 1 esse
summam duorum quadratorum, “Proof of atheorem of Fermat that dl prime numbers of theform4n + 1
are the sum of two squares [E241], Euler gives apartiad proof of Theorem 1, but heis only able to show
that such primes are the sum of squares of two rational numbers, not the sum of squares of two integers.

He continues with his“theorems’ about numbers of theform aa + 2bb:

“Theorem4: The prime divisors of numbers contained in the form aa +
2bb are dways ether 2 or numbers contained in the form 8n + 1, or in the
form 8m + 3.

“Theorem 5. All prime numbers of the foorms 8m + 1 or 8m + 3 are
contained among the numbers of the form aa + 2bb.

“Theorem6: No number of the form aa + 2bb can be divided by any
number of the form 8m —1 or of theform 8m—3.”

Euler will soon learn alot more about numbers of theform aa + 2bb. In 1753, just two years
after this paper is published, he will write another paper, E256, entirely devoted to the properties of such
integers. For example, hetdls usthere, and aso gives proofs, that the set of such numbersis closed
under multiplication. We will perhaps devote part of afuture column to this ddightful paper, but there
isn't room in thisone.

Let usreturnto E 164. Euler continues listing “theorems,” three at atime, each describing the
divisors of aform aa + pqg, for p the prime numbers 3, 5, 7, 11, 13, 17, 19, and then for composite
numbers 6, 10, 14, 15, 21, 30 and 35. He demongtrates by example that the theory of formsinvolving
compositevauesof p isan easy cordllary of the theory of formsfor which pisprime. A typicd
exampleis Theorem 19, giving dl the possble forms of prime divisors of a number of the form
aa + 13bb,

“Theorem 19: All of the prime divisors of a number of the form aa + 13bb
ae dther 2 or 13 or they are described by one of the following 12

formulas
52m+1 52m+7
52m+ 49 52m+ 31
52m+9 52m+ 11
52m +25 52m+ 19
52m+ 29 52m + 47
52m+ 17 52m + 15.”



This seems like a disorganized jumble of numbers, but there are a great many patterns here.
Some of those patterns would be easy to see if we had looked at all 59 of Euler’ s theorems, but others
require Euler’ s genius to discern, as well as hisimmense patience and skills a caculation to prepare the
data. Today it isapleasant exercise in Maple ™ or Mathematica ™ to reproduce them. What would
Euler have done with such tools?

Here are some of the eesier patterns in the cases when p isprime:
The number 1 is dways among the possible remainders.

There are 12 formulas because p is 13, and 12 is one less than that. In generd, the number of
formulas necessary to describe the factors of aa + pbb isthe number of integerslessthan p and
relatively primeto p.

The formulas describe numbers modulo 52 because, in generd, the possible prime factors are
determined by their values modulo 4p.

Since we are talking about prime factors, the remainders must obvioudy be rdatively primeto
52, and, in generd, reatively primeto 4p. In fact, the possible remainders of prime factors (not
counting the two specid factors, 2 and p) of numbers of theform aa + pbb are exactly haf of the
remainders less than 4p and rlatively primeto 4p. The other haf of the remainders are the ones
described in the third theorem of Euler’ striads of theorems.

Thislagt pattern leads to what seem to me to be more difficult observations:
If a isapossbleremainder, then —a isadways an impossible remainder.

Here, of course, we take the negative modulo 4p. For example, inthe case p = 13, we seein
Theorem 19 above, we seethat 7, 25 and 47 are al among the possible remainders. If we looked at
Theorem 21, we would see that their negatives modulo 52, which are the values 45, 27 and 5,
respectively, are dl among the impossible remainders.

If a and b are among the possible remainders, then so dsoisab.

We see, for example, that 7 and 11 are possible remainders. Knowing that, modulo 52, their
product 77 leaves aremainder 25, we check and see that 25 is also aremainder.

In modern terms, Euler has shown that the set of remainders of prime divisors of numbers of the
formaa + pbb modulo 4p form a subgroup of index 2 (though he hasn't been explicit about showing
that it contains the necessary inverses.) Euler, of course, did not have these modern terms. They were at
least a hundred years away, and came late enough that Latin had been abandoned as the international
language of mathematics. Hence, mathematica Latin does not even have the vocabulary to write these
results in the context of group theory.

Findly, we come to the most delicate pattern that Euler found here, and the one that links factors
of formsto quadratic reciprocity. If a isrdatively primeto 4p, and aso less than 4p, then the patterns
we have aready described tell usthat either a isamong the possible remainders, or —a is, but not both.
Euler wants to determine which of these two is the possible remainder.



To begin to explain the pattern he sees, he gives us atable, which we give here, dightly
modified:

If p=3n+1 then -3 isapossble remainder. Otherwise, +3is.

If p=5n+1
or p=5n+4 then +5 isapossbleremainder. Otherwise, -5is.

If p=7n+1
or p=7n+2
or p=7n+4 then -7 isapossble remainder. Otherwise, +7 is.

If p=1ln+1
or p=11ln+3
or p=1ln+4
or p=1In+5
or p=11n+9 then -11 isapossbleremander. Otherwise +11is.

Theserules dl have the same form. We take p to be a prime number, and for another prime
number g, we ask whether the possible remainder will be g or —.

The pattern hereisvery subtle. Euler saw the pattern, and only then did he organize his
presentation of the datato make it easier to explain the pattern. Even o, it isnot very easy.

The possible forms that p might are each given modulo another prime number . The remainders
inour lig are dl the perfect squares modulo g. Inthelagt ligt, for example, where q = 11, the numbers 1,
4 and 9 are obvioudy squares, while 3 and 5 are the squares of 5 and 4, respectively, modulo 11.

Thetabletdlsustha, for g = 5, +q isapossble remainder if p isaperfect square modulo g.
However, for g =3, 7 or 11, exactly the opposite is the case; —q isapossble remainder if p isa perfect
square modulo g.

The pattern would be alittle less obscure if Euler had extended histableto g = 13, so that we
could see that the number 13 behaves like the number 5.

So, what property is shared by the primes 5 and 13, but not by the primes 3, 7 and 11? The one
that mattersisthat 5 and 13 are of the form 4m + 1, but 3, 7 and 11 are of the form 4m + 3.

Let’stry to tie this back to quadratic reciprocity now. Given aprime number p, Euler wants to
be able to tell us about the prime divisors of numbers of the form aa + pbb. The second theorem in
Euler striadstell us that these are exactly the prime numbers that themsalves can be written in thisform.

Euler describes these possible prime divisorsin terms of their remainders modulo 4p, and the
result that we described as being related to subgroups tells us that we can reduce the problem to
remainders that are prime remainders.

Then whether or not g, a prime remainder modulo 4p is apossible remainder for a prime of the
formaa + pbb, depends on whether or not p is a perfect square modulo g, and on whether or not g is of
thefoom4m+ 1. Thatis



Euler'sRule

In the case when q is of theform 4m + 1, aprimedivisor of aa + pbb can have the form 4n + q if

p is a perfect sqguare modulo g, thet isif 33_02: +1, but not if aq_"?: - 1.
dg dg
On the other hand, if g isof theform 4m + 3, the opposite rule gpplies and it can have the form

4n —qif p isa perfect square modulo g, thet isif gp ~=+1, but not if ?30 - 1.
4o

Perhaps an example would be useful. Let us pretend that we haven’t seen Theorem 19, and ask
if anumber of theform aa + 13bb can have the form 52n + 23. Here, p =13, g =23, and g isof the
form4m+ 3. So, welook at the second part of Euler’srule and see that a prime divisor can have the

form 52n — 23 if &pO_ =+1, that ISIf . It turns out that ?EO_ +1 (afact we can determine

8q [4] 8_ B
either by trying all the possibilities and finding that 6° = 36 =13(mod23) , o by leaving Euler’stime for
our own and using the Quadratic Reciprocity Theorem). Hence, prime divisors of the form 52n — 23 are
possible, and consequently, those of the form 52n + 23 are impossible.

When we check Theorem 19, we do not find the number 23 among the possible remainders, so
our calculation checks out.

It's not quadretic reciprocity, but it is clearly closely related. Moreover, it isalesson that the
rich and elegant theory of quadratic reciprocity, and its tools and machinery that include modular
arithmetic, quadratic forms and cdlassfidds have their originsin the ordinary and e ementary questions
of factoring integers into prime factors.
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