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Most readers will know that the constant e is, indeed irrational, even transcendental. |
remember being asked to prove e wasirrationa on my written exams for my master’ s degree. It
is naturd, then, to ask who was the first to prove it, and to expect an easy and unambiguous
answer. The answer, though, iSn't as easy as we might expect, nor isit entirely unambiguous.

Hereis some of what MacTutor [McCT] hasto say about it:

“Most people accept Euler as thefirgt to prove thet eisirrationd.
Certainly it was Hermite who proved that e is not an dgebraic
number in 1873.”

Note that MacTutor hedges their attribution abit. They write “Most people accept Euler
asthefirg ...,” (my italics) and do not commit themsalves to the more definite “ Euler was the
fird ...” Inthiscase Euler’srivd is not some earlier mathematician who might have aclam to
the result, but Euler’ s younger protégé Johann
Heinrich Lambert (1728-1777), pictured at the right.
Of Lambert, MacTutor writes:

“Lambert is best known, however, for his
work on p. Euler had adready edtablished in
1737 that e and € ae both irraiond.
However Lambet was the fird to give a
rigorous proof that p is irraiond. In a paper
presented to the Berlin Academy in 1768
Lambet showed that, if X is a nonzero
raiond number, then neither € nor tan x can
be rationa.”

Note that MacTutor chooses words carefully,
Euler “established,” not “proved.” On the other hand,
Lambert’s proof satisfies most standards of rigor.
The hedging must be because people doubt the rigor




of Euler’s proof.

Our purpose in this month’s column isto look at what Euler did, and to see just how
rigorous Euler’ s results were.

Euler and Lambert both used the tools of continued fractions to produce their resuilts.
Euler's 1737 article that MacTutor mentionsis “De fractionibus continuis dissertation” [E71].
Though Euler was not the first one to study continued fractions, this article is the first
comprehensive account of their properties. Euler repeats most of the elementary properties of
continued fractionsin the last chapter of volume 1 of his 1748 magterpiece Introductio in
analysin infinitorum [E101]. Both of these are available in excellent English trandations.

The most generd form of acontinued fraction is
a

a+ b

b+

f +etc.

All the symboals, both Latin and Greek, are taken to be positive whole numbers. The Greek
letters Euler cals numerators and the Létin are the denominators. In practice, the most
interesting continued fractions are those for which dl the numerators are 1. Continued fractions
in thisform are sometimes cdled regular.

It isnot difficult to show that the regular continued fraction expansion of any rationa
number isfinite, 0 to prove that agiven number isirrationd, it suffices to show thet its regular
expanson is not finite. We will show how this works using one of Euler’ s examples from the

e-1 8591409142295

Introductio. We consder the number » 0.8591409142295 = )
2 10000000000000

Since this number isless than 1, the first denominator, a = 0. Now, Euler invertsthe
fractiona part and gets
10000000000000 —14 1408590847704

8591409142295 8591409142295

The next denominator isthe integer part of this, sob = 1. Invert the fraction part of this and get

8591409142295 _ 6+ 139862996071
1408590847704 1408590847704 °

The next denominator is the integer part of this, so c = 6. Continue to take integer parts, and
invert fractiona parts, and we get

1408590847704 _ 10+ 9950896994
139862996071 139862996071

s0d = 10.



139862996071 551438155
=14+

9950896994 9950896994 '

soe=14.

9950896994 _ 18+ 25010204

551438155 551438155
sof=18.

551438155 _,, , 1213667

25010204 25010204
sog =22

Euler stops here, saying “If the value for e at the beginning had been more exact, then the
sequence of quotients would have been 1, 6, 10, 14, 18, 22, 26, 34, ..., which form the terms of
an arithmetic progression. It follows that

e' 1:0+ 1 ”
2 ., 1

22 + €tc.

Note that Euler’ s * arithmetic progression” doesn't start with the first denominator, but
garts with the 6, after which the denominators increase by 4.

Euler adds, somewhat disingenuoudy, “This result can be confirmed by infinitesmal
cdculus”

Since the sequence of denominators clearly increases, and never terminates, thisis not a
finite continued fraction. Thus, by the work Euler did earlier, its vaue cannot be rationa. Since

%1 isnot rationd, e cannot berationd, ether.

By smilar means, Euler shows that

e=2+

1+

2+

1
1
1
1
1
6+ !
1+ etc.

1+
1+

4+

1+
1+




Unless Euler skipped something, the proof is done.

Alas, Euler did skip something, and he hid it in that comment, “This result can be
confirmed by infinitesmal calculus” He has only observed that finite caculationslead to a
pattern for the first few denominators, and that the pattern seemsto extend indefinitely. He has
not proved it, and he knows he has not proved it.

What could he have been thinking?

Earlier in the chapter of the Introductio, Euler showed how to convert a continued
fraction, whether regular or not, into an dternating series. He showed that if

a
b

g
d

e
f +etc.

X=a+

b+
c+

d+
e+

then
x:a+i- ab N abg ]
b b(bc+b) (bc+b)(bcd +bd +gb)

Perhaps we can apply this dternating series formulato the coefficients we got for %1
and get something related to one of the well-known seriesfor €? But, if we do that, we get

1 1
x=1-—+
7 T7TX71

which does not seem related to any other well-known seriesfor e.

o, that was't how he did it. If we go back to E-71, we get more clues. In fact, he
writes:

“In the preceding sections, where | have converted the number e (whose
logarithm is 1) together with its powers into continued fractions, | have only
observed the arithmetic progresson of the denominators and | have not been
able to affirm anything except the probability of this progresson continuing to
infinity.  Therefore, | have exerted mysdf in this above dl: tha | might
inquire into the necessty of this progresson and prove it rigoroudy. Even

thisgod | have pursued in a peculiar way.”

Indeed his solution comes from amogt surprising direction, differentia equations. It lies
in aform of an important differentid equation caled the Ricatti equation:

-4n
ady + y?dx = x2dx



1

Euler daimsthat if we substitute p = (2n +1)x2™, then the eguation transformsinto
adq+g’dp=dp

“| have found that

This continued fraction terminates after n ratios, but if n istaken to be one of Euler’s
“infinite numbers,” then the continued fraction goes on forever.

Thisisagreat legp. If Euler did show this previoudy, then | couldn’t find where he did
it. Themost likdy placesto look would bein E-28 and E-31, where Euler does other series
andyses of the Ricatti equation, but | can't see it there, or in any other papers on differentia
equations that Euler wrote before he wrote E-71. It was a great mystery to me.

On the other hand, the variablesin the equation adq+ g’ dp = dp separate to give

which, in turn, integratesto give

ke ogl+—q =p+C.

2 1-¢g
The congtant C can be taken to be zero with the initial conditions g =¥ and p=0. A bit of
agebragivesthat

2

|5

a+l
q_

QD

¢ ST
g-1

=

Jugt alittle while ago, though, we got a continued fraction expanson for g, which we can
subdtitute into this last expression to get

2p
% 1
e _1+a-p 1
p 3R L
p sa, 1
P72, ac
p

Vaiousvauesof p and a give continued fractions for various expressonsinvolving e.
For example, p =1 and a = 2 gives



10+

14+ etc.

which is equivaent to the expanson for e;; that Euler had observed earlier.

Euler works through afew other subgtitutions to derive his other observations, then
writes,

“Truly everything found above follows from these formula, by which we
have expressed e and its powers as continued fractions. That is, the
necessity of the progressions only observed earlier is now proved.”

So, we complete the path from Euler’ s continued fraction solution to the Ricatti equation
to theirrationdity of e, but we can't be very satisfied with that solution of the differentia
equation. | looked at agood sample of Euler’s earlier work, and can't find where Euler might
have discovered this solution. | was about to give up and admit Euler’s claim to having proved
theirrationdity of e had agreeat big holeinit.

So, | was about to throw in the towd and say Euler’s cdlaim to proving theirrationdity of
ewas kind of weak. | wasn't quite ready to let go of it, when | had one of those “right under my
nose’ experiences. Thereit wasin the last five paragraphs of E-71. Euler gives, in condderable
detall, his proof that the continued fraction solves the Ricatti equation. We won't go into much
detail; the interested reader can find the details in the Wyman and Wymean trandation [E71],
garting in paragraph 31. Briefly, he starts with aregular continued fraction in which the
denominators form an arithmetic series. 1t looks like

s=a+t

@+na+

1+2na+

1

@+t3nat+—————
(1+4n)a+etc.

He uses his identities from early in the paper to rewrite thisas aratio of power series
involving n and &, then shows that the power seriesin the numerator of the ratio is related to the
derivative of the power seriesin the denominator. This gives him a differentid equation, which,
three pages later, he transforms into the Ricatti equation he wanted.

It'sright. It'scomplete, and it works. |"d been fooled when Euler suggested that he had
dready shown the relation between the continued fraction and the differentid equation. Euler
redlly did provethat eisirraiond, and he probably regarded it as the main point of this paper.



We reready to close this month’s column. There was probably a shorter path from the
question “Who proved eisirrationd?’ to the conclusion “Euler,” but this path shows some of the
details of how we learned the story. We hope you' ve enjoyed the adventure.
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