
  1 

 
 
 

 

 

How Euler Did It 
 

by Ed Sandifer  
  

Divergent series 
 
June 2006 
 
 Today we are fairly comfortable with the idea that some series just don’t add up.  For 
example, the series 

1 1 1 1 1 1 etc.− + − + − +  
 
has nicely bounded partial sums, but it fails to converge, in the modern meaning of the word.  It 
took mathematicians centuries to resolve the paradoxes of diverging series, and this month’s 
column is about an episode while we were still confused. 
 
 In the 1700’s, though, many mathematicians were more optimistic, or perhaps more 
naïve, about the limitations of mathematics, thinking that with enough brilliance and enough 
work they could solve any differential equation and sum any series.  Daniel Bernoulli, for 
example, thought that the series above ought to have value ½, not for the usual reason that 

involves geometric series and 2 31
1

1
x x x

x
= + + + +

−
L , but because of a probabilistic argument.  

He thought that since half of the partial sums of the series are +1 and half of them are zero, the 

correct value of the series would be the expected value 
1 1 1

1 0
2 2 2

⋅ + ⋅ = . 

 
 By a similar argument, Bernoulli concluded that 1 + 0 – 1 + 1 + 0 – 1 + 1 + 0 – 1 + etc. 
would have value 2/3, and that, by a judicious interpolation of zeroes into the series, it could be 
argued to have any value between 0 and 1.   
 
 It is sometimes frustrating to us that the writers of the time usually did not distinguish 
between a series and a sequence.  The words “progression” and “series” took both meanings.  At 
the same time, though, they made a now-obsolete distinction between the value of a series and 
the sum of the same series.  Bernoulli and his contemporaries would give the series 
1 1 1 1 1 1 etc.− + − + − + the value ½, since they could make reasonable calculations and analyses 
that supported this value, but they would be reluctant to call that value a sum.  They seemed to 
think that sums required convergence of some sort. 
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 Euler entered the conversation with a paper De seriebus divergentibus (On divergent 
series) [E247], written in 1746, but not read to the Academy until 1754, nor published until 1760.  
Euler wrote this paper about two years after he finished his great precalculus textbook the 
Introductio in analysin infinitorum, in which he devotes a good deal of time to issues of series.  
The Introductio does not deal with divergent series directly, but they are often near to his 
thoughts. 
 
 Euler’s intent in E247 is to give a value to a series he calls the “hypergeometric series of 
Wallis:” 
 

1 – 1 + 2 – 6 + 24 – 120 + 720 – 5040 + etc. 
 
A century earlier, John Wallis had introduced the numbers he called “hypergeometric numbers” 
and we call “factorial numbers.”  Euler’s series is the alternating sum of those numbers. 
 
 If Euler is going to sum such a series, he first has to convince his reader, who may not be 
as optimistic as he is, that such series can have a meaningful value.  He states his case beginning 
with an uncontroversial example: 
 

“Nobody doubts that the geometric series 
1 1 1 1 1

1 etc.
2 4 8 16 32

+ + + + + +  converges to 2.  As more terms are 

added, the sum approaches 2, and if 100 terms are added, the 
difference between the sum and 2 is a fraction with 30 digits in its 
denominator and a 1 in its numerator. 

The series 1 1 1 1 1 etc.+ + + + +  and 1 + 2 + 3 + 4 + 5 + 6 + 
etc. whose terms do not tend toward zero, will grow to infinity and 
are divergent.” 

 
 This is based on an idea of convergence, but since it lacks logical quantifiers, it is 
doomed to far short of modern standards of rigor. 
 
 On the other hand, Euler has interesting things to say about the alternating series of 1’s.  
He tells us that in 1713 Leibniz said in a letter to Christian Wolff that 1 1 1 1 1 1 etc.− + − + − +  

should have the value ½, “based on the expansion of the fraction 
1

1 1+
.”    Instead of starting 

with a geometric series, as we usually see the calculation done today, Leibniz started with the 

series  expansion of 
1

1 x−
, that is 2 3 41 etc.x x x x+ + + + +  and evaluated it at x =  – 1.  Likewise, 

Leibniz took 1 2 3 4 5 6 etc.− + − + − +  to be ¼ by expanding 
( )2

1

1 1+
.  Leibniz thought that all 

divergent series could be evaluated. 
 
 Euler gives us four pairs of examples of divergent series: 
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I. 1 + 1 + 1 + 1 + 1 +1 + etc. 

1 2 3 4 5 6
etc.

2 3 4 5 6 7
+ + + + + +  

II. 1 1 1 1 1 1 etc.− + − + − +  

 
1 2 3 4 5 6

etc.
2 3 4 5 6 7

− + − + − +  

III. 1 + 2 + 3 + 4 + 5 + 6 + etc. 

1 + 2 + 4 + 8 + 16 + 32 + etc. 

IV. 1 – 2 + 3 – 4 + 5 – 6 + etc. 

 1 – 2 + 4 – 8 + 16 – 32 + etc. 

 
 He explains that such series have been “the cause of great dissent among mathematicians 
of whom some deny and others affirm that such a sum can be found.”  He says that the first 
series on the list ought to be infinite, both from the nature of his understanding of infinite 

numbers and because, as a geometric series it has value 
1 1

1 1 0
=

−
, “which is infinite.” 

 
 Euler is trying to be fair in his account of this divisive controversy, and he presents the 
other side of the argument, writing  
 

“One could object to this argument by saying that 
1

1 a+
 is not 

equal to the infinite series 2 3 4 5 61 etc.a a a a a a− + − + − + −  unless 
a is a fraction smaller than 1, because, if we work out the division, 
we get 
 

1
3 31

1
1 1

n
n a

a a a a
a a

+

= − + − + ±
+ +

L ∓ , and if n stands for an infinite 

number, then the fraction 
1

1

na
a

+

+
∓  cannot be omitted because it 

doesn’t vanish unless a < 1, in which case the series converges.” 
 
 
 Euler’s sympathies, though, are with the side of the argument that sums even divergent 
geometric series, and he states what he hopes will be the final word on the issue of the existence 
of divergent series: 
 

“Defenders of the idea of summing divergent series resolve 
this paradox by devising a rather subtle means of discriminating 
among quantities that become negative, some that stay less than 
zero and others that become more than infinity.  Of the first sort is 
-1, which by adding it to the number a + 1 leaves the smaller 
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number a.  Of the second sort is the -1 that arises as 1 + 2 + 4 + 8 + 
16 + etc., which is equal to the number one gets by dividing +1 by 
-1.  In the first case, the number is less than zero, and in the second 
case it is greater than infinity. 
 
 This can be confirmed by the following example of a 
sequence of fractions: 
 

1 1 1 1 1 1 1 1
, , , , , , , etc.

4 3 2 1 0 1 2 3− − −
 

 
where the first four terms are seen to grow, then grow to infinity, 
and beyond infinity they become negative.  Thus the apparent 
absurdity is resolved in a most ingenious way.” 

 
 Euler is claiming that numbers greater than infinity are the same as numbers less than 
zero.   
 
 Having resolved (he hopes) the question of existence, Euler turns to summing some 
series.  He needs some ground-work.  Euler asks us to consider an arbitrary (alternating) series, 
s: 
 

s = a – b + c – d + e – f + g – h + etc. 
 

Neglecting signs, the first differences are  
 

b – a, c – b, d – c, e – d, etc. 
 
The second differences are  
 

c – 2b + a, d – 2c + b, e – 2d + c, etc. 
 
and so forth for fourth, fifth, etc.  Euler denotes the first value in each sequence of differences by 
a Greek letter.  He takes b aα = − , 2c b aβ = − + , 3 3d c b aγ = − + − , etc., and tells us that  
 

(1) etc.
2 4 8 16 32
a

s
α β γ δ

= − + − + −  

 
 This is Euler’s key tool for much of the rest of this paper.  Euler doesn’t prove his 
formula (1), but most readers should be able to justify his claim.  My own  “proof” depends on 
an only slightly obscure identity about binomial coefficients:  

1

1
1

2k
k n

k
n

∞

+
=

 
= 

 
∑ . 
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 Of course, the proof is valid by modern standards of rigor only if the series s satisfies 
certain conditions of convergence.  Still, it is a remarkable formula.  If the series that defines s 
converges rather slowly, then this new series is likely to accelerate the convergence 
considerably, because the differences α, β , γ etc. are likely not to be very large, and the formula 
introduces a geometric series into the denominators.   
 
 To show us how this works, Euler looks at his alternating series of ones.  For that series, 
a = 1, and all the differences, α, β , γ etc. are zero.  Formula (1) gives us 
 

1 0 0
etc.

2 4 8
1

,
2

s = − + −

=
 

as promised. 
 
 If we take 
 

 s = 1 – 2 + 3 – 4 + 5 – 6 = etc., 
 
then all the first differences are 1, and all subsequent differences are 0, so that 
 

 s = ½ - ¼ = ¼. 
 
 If we take 
 

 s = 1 – 4 + 9 – 16 + 25 – 36 + etc. 
  
the alternating sum of perfect squares, then our first differences are 
  

3, 5, 7, 9, 11 
 

and the second differences are all 2, so that 
 

1 3 2
0

2 4 8
s = − + = . 

 
 The alternating geometric sum of powers of 3 is a little bit trickier. 
 

 s = 1 – 3 + 9 – 27 + 81 – 243 + etc. 
 

First differences are  2, 6,  18, 54, 162 
Second differences are 4, 12, 36, 108 
Third differences are   8, 24, 72 
Fourth      16,  48 

      etc. 
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So, 
 

 

1 2 4 8
etc.

2 4 8 16
1 1 1 1

etc.
2 2 2 2
1

.
4

s = − + − +

= − + − +

=

 

 
 In the last step, he uses his result about 1 – 1 + 1 – 1 + etc. 
 
Now we turn to the main problem, Wallis’s hypergeometric series 
 

A = 1 – 1 + 2 – 6 + 24 – 120 + 720 – 5040 + 40320 – etc. 
 
Taking 1 – 1 = 0, and dividing by 2, we get the series 
 

1 3 12 60 360 2520 20160 181440 etc.
2
A

= − + − + − + − +  

and differences 
 

2 9 48 300 2160 17640 161280 
 7 39 252 1860 15480 143640 
  32 213 1608 13620 128160 
   181 1395 12012 114540 
    1214 10617 102528 
     9403* 91911 
      82508 

 
* A footnote in the Opera Omnia edition says that the original has a typographical error here, 

9407, and that all subsequent numbers that depended on this are also in error, but are 
corrected in the Opera Omnia. 

 
This makes  
 

 
1 2 7 32 181 1214 9403 82508

etc.
2 2 4 8 16 32 64 128 256
A

= − + − + − + − +  

 
This may not look like progress, but note that the numerators are smaller than they were 

in the original series for A, and that there are rapidly growing denominators.  There is a sense in 
which this series isn’t “as divergent” as the original one was.   
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 Moreover, it is still alternating, so the same trick will work again (and again, and again).  
Take the differences again (switching back to the series for A rather than for A/2 that he used in 
the first step) , as before, and find that they are 
 

 α = 18/8, β  = 81/16, γ = 456/32, δ = 3123/64,  etc. 
 
Using these, we can get yet another series for A: 
 

7 18 81 456 3123 24894
etc.

8 32 128 512 2048 8192
A = − + − + − +   

 
The next iteration of this process gives 
 

5 81 132 771 4122
16 256 2048 16384 131072

A − = − + − + etc. 

 
so, telescoping a bit, and then neglecting the terms represented by the “etc.”, he claims 
 

5 512 2046
etc.

16 2048 131072
38015
65536
0.580.

A = + + +

=

=

 

  
 This is an example of what we now call an “asymptotically convergent” series.  For a 
while, the partial sums seem to be converging, but then they swerve away from what seemed to 
be the limit and diverge.  Modern readers may have seen them in other contexts like Euler-
Maclaurin series, and they were of great interest to important 20th century mathematicians like G. 
H. Hardy. [H] 
 
 With some more work, not shown in the article, Euler tells us that the series can be 
shown to to have the value 0.59634739, but the editors of the Opera Omnia tell us that this last 9 
should be a 6. 
 
 This is the key result of this paper, but Euler understands that some readers might not be 
convinced that he hasn’t made any mistakes.  So, he solves the same problem several other ways.  
For example, he finds diverging series for 1/A and log A, and finds that similar methods also lead 
to a value of A near 0.59.  He finds ways to write A and 1/A as continued fractions and evaluates 
those continued fractions to get still more estimates consistent with the ones before. 
 
 One of his more interesting solutions involves differential equations and infinite series.  
He writes  
 

2 3 4 5 61 2 6 24 120 etc.s x x x x x x= − + − + − +  
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and plans to evaluate it in the case x = 1.  Differentiating gives 
 

3 41 2 6 24 120 etc.

.

ds
x xx x x

dx
x s
xx

= − + − + −

−
=

 

 

Euler loves differential equations.  He rewrites this as 
sdx dx

ds
xx x

+ = , solves for s, and 

(reminding us that e is the number whose hyperbolic logarithm equals 1, that is e is what we 
expect it to be) gets 

1
1 x
x e dx

s e
x

−

= ∫ . 

 
 Substituting x = 1 into the definition of s gives us our alternating hyperbolic series on the 
left.  On the right hand side, we see that the variable x is being over-used, typical in the 18th 
century, and the substitution x = 1 should only be made outside the integral, not inside.  He gets 
 

1

1 1 2 6 12 120 etc.
xe dx

e
x

−

− + − + − + = ∫  

 
where the integral is taken to be between 0 and 1.  Euler applies elementary numerical methods, 
evaluating the integrand at ten values between 0 and 1 and adding them up, and estimates that A 
= 0.59637255, consistent with his other estimates of A, but containing some small calculation 
errors explained in the Opera Omnia. 
 
 By the end of the article, Euler has estimated A at least six very different ways, and every 
time he gets the same estimate. When such different analyses all lead to the same conclusion, it 
is easy to understand why mathematicians of Euler’s time believed in the utility of interesting 
numbers, and could believe that numbers “beyond infinity” might be negative. 
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