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Today we are fairly comfortable with the ideathat some seriesjust don't add up. For
example, the series
1- 1+1- 1+1- 1+e€lc.

has nicely bounded partid sums, but it fails to converge, in the modern meaning of theword. It
took mathematicians centuries to resolve the paradoxes of diverging series, and thismonth’s
column is aout an episode while we were still confused.

In the 1700’ s, though, many mathemeéticians were more optimistic, or perhgps more
naive, about the limitations of mathematics, thinking that with enough brilliance and enough
work they could solve any differential equation and sum any series. Daniel Bernoulli, for
example, thought that the series above ought to have vaue %2, not for the usua reason that

involves geometric series and % =1+x+ x>+ x>+ -+, but because of a probabilistic argument.
- X
He thought that since haf of the partial sums of the series are +1 and haf of them are zero, the

correct value of the series would be the expected value %zd_+§1><0 :—1.
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By asmilar argument, Bernoulli concludedthat 1+0—-1+1+0-1+1+0—-1+ €tc.
would have value 2/3, and that, by ajudiciousinterpolation of zeroes into the series, it could be
argued to have any value between 0 and 1.

It is sometimes frudtrating to us that the writers of the time usudly did not distinguish
between a series and a sequence. The words * progresson” and “series’ took both meanings. At
the same time, though, they made a now-obsolete distinction between the value of a seriesand
the sum of the same series. Bernoulli and his contemporaries would give the series
1- 1+1- 1+1- 1+ etc.the value %2, Snce they could make reasonable caculations and andyses
that supported this value, but they would be reluctant to call that value asum. They seemed to
think that sums required convergence of some sort.




Euler entered the conversation with a paper De seriebus diver gentibus (On divergent
series) [E247], written in 1746, but not read to the Academy until 1754, nor published until 1760.
Euler wrote this paper about two years after he finished his great precal culus textbook the
Introductio in analysin infinitorum, in which he devotes agood ded of time to issues of series.
The Introductio does not deal with divergent series directly, but they are often near to his
thoughts.

Euler’ sintent in E247 isto give avaue to a series he calls the “ hypergeometric series of
walis”

1-14+2-6+24—-120+ 720 — 5040 + etc.

A century earlier, John Walis had introduced the numbers he called “ hypergeometric numbers’
and we cdll “factorid numbers” Euler's seriesisthe dternating sum of those numbers.,

If Euler isgoing to sum such a series, hefirgt has to convince his reader, who may not be
asoptimigic as heis, that such series can have ameaningful vaue. He states his case beginning
with an uncontroversd example:

“Nobody doubts that the geometric series

11 1 1 1
1+=+=+=+-—+-—+efc. converges to 2. As more terms ae

2 4 8 16 32
added, the sum approaches 2, and if 100 terms are added, the
difference between the sum and 2 is a fraction with 30 digits in its
denominator and a 1 in its numeretor.
The series 1+1+1+1+1+etc. and 1+ 2+ 3+4+5+6 +
etc. whose terms do not tend toward zero, will grow to infinity and
are divergent.”

Thisis based on anideaof convergence, but sinceit lacks logicd quantifiers, it is
doomed to far short of modern standards of rigor.

On the other hand, Euler has interesting things to say about the alternating seriesof 1's.
Hetdlsusthat in 1713 Leibniz sad in aletter to Chrigtian Wolff that 1- 1+1- 1+1- 1+ etc.
should have the value %2, “based on the expansion of the fraction 1T11 " Ingtead of gtarting
with a geometric series, as we usualy see the calculation done today, Lebniz started with the

series expangion of L,thatis 1+x+x*+x3+x* +etc. and evaluated it at x = — 1. Likewise,

Leibniztook 1- 2+ 3- 4+5- 6+ etc. to be ¥4 by expanding ( 1 )2. Leibniz thought thet dl
1+1
divergent series could be evaluated.

Euler gives usfour pairs of examples of divergent series:



+1+1+1+1+1+etc.
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1- 1+1- 1+1- l+etc.
1

22,384,558 &

2 3 45 6 7
1+2+3+4+5+6+¢tc

1+2+4+8+16+ 32 +etc.
1-2+3-4+5-6+¢tc.
1-2+4-8+16-32+€lc.

He explains that such series have been “the cause of greet dissent anong mathematicians
of whom some deny and others affirm that such a sum can be found.” He saysthet the first
series on the lig ought to be infinite, both from the nature of his understanding of infinite

numbers and because, as a geometric seriesit hasvalue 1. 6 “which isinfinite”

Euler istrying to be fair in his account of this divisve controversy, and he presents the
other 9de of the argument, writing

“One could object to this argument by saying that % is not
+a

equd to the infinite series 1- a+a®- a’*+a’- a>+a’- ec. unles
a is a fraction smdler than 1, because, if we work out the divison,

we get

i—1 a+a’- a*+...xa"

1+a

n+l

, and if n gands for an infinite

1+a

n+l

number, then the fraction F a cahnot be omitted because it

l+a

doesn't vanish unlessa < 1, in which case the series converges.”

Euler’ s sympathies, though, are with the side of the argument that sums even divergent
geometric series, and he states what he hopes will be the find word on the issue of the existence

of divergent series:

“Defenders of the idea of summing divergent series resolve

this paradox by devisng a rather subtle means of discriminating
among quantities that become negative, some that stay less than
zero and others that become more than infinity. Of the firg sort is
-1, which by adding it to the number a + 1 leaves the smdler



number a. Of the second sort isthe -1 that arisessas1+2+4 + 8 +
16 + etc.,, which is equd to the number one gets by dividing +1 by
-1. In the first case, the number is less than zero, and in the second
cae it isgreater than infinity.

This can be confirmed by the following example of a
sequence of fractions:

11111 1 1 1etC

where the firg four terms are seen to grow, then grow to infinity,
and beyond infinity they become negative. Thus the agpparent
absurdity is resolved in amaost ingenious way.”

Euler is daming that numbers greater than infinity are the same as numbers less than
zexro.

Having resolved (he hopes) the question of existence, Euler turns to summing some
series. He needs some ground-work. Euler asks usto consider an arbitrary (dternating) series,
S

s=a-b+c-d+e-f+g—-h+etc
Neglecting signs, the first differences are
b-ac-b,d-c,e-d, etc
The second differences are
c—2b+ad-2c+ b,e-2d+ c, etc.
and so forth for fourth, fifth, etc. Euler denotes the first value in each sequence of differences by
aGreek letter. Hetakesa =b- a, b=c- 2b+a, g=d- 3 +3b- a, €c., andtdlsusthat

o =222 9.°% &
2 4

Thisis Euler’ skey tool for much of the rest of this paper. Euler doesn’t prove his
formula (1), but most readers should be able to judtify hisclam. My own “proof” depends on
an only dightly obscure identity about binomid coefficients

5 i % 0 =1
el 2k+1 (é‘na '



Of course, the proof is valid by modern standards of rigor only if the series s satisfies
certain conditions of convergence. Still, it isaremarkable formula. If the series that defines s
converges rather dowly, then this new seriesis likely to accelerate the convergence
considerably, because the differences a, b, g etc. are likely not to be very large, and the formula
introduces a geometric seriesinto the denominators.

To show us how thisworks, Euler looks at his dternating series of ones. For that series,
a=1, and dl the differences, a, b, g etc. are zero. Formula (1) givesus
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as promised.
If we take
s=1-2+3-4+5-6=¢tc,
then dl thefirgt differences are 1, and al subsequent differences are 0, so that
S=Yo-Ya=Ya
If we take
s=1-4+9-16+25-36 + etc.
the aternating sum of perfect squares, then our firgt differences are
3,57911

and the second differences are dl 2, s0 that
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The dternating geometric sum of powers of 3isalittle bit trickier.
S=1-3+9-27+81-243 + etc.

Firg differencesare 2, 6, 18, 54, 162

Second differences are 4 12, 36, 108
Third differences are 8, 24, 72
Fourth 16, 48

etc.



1 2 4 8
S==- —+—- —+elC.
2 4 8 16
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Inthelast step, heuses hisresult about 1—1 + 1 — 1 + etc.
Now we turn to the main problem, Wallis s hypergeometric series
A=1-1+2-6+24-120+ 720 — 5040 + 40320 — etc.
Taking1—1 =0, and dividing by 2, we get the series

§:1- 3+12- 60+ 360- 2520+ 20160- 181440 + etc.

and differences

2 9 48 300 2160 17640 161280
7 39 252 1860 15480 143640
32 213 1608 13620 128160
181 1395 12012 114540
1214 10617 102528
9403* 91911
82508

* A footnote in the Opera Omnia edition saysthat the original has atypographica error here,
9407, and that dl subsequent numbers that depended on this are dso in error, but are
corrected in the Opera Omnia.

Thismakes

1 2 7
B Juntnps etc.
2 4 8 16 32 o664 128 256

Thismay not look like progress, but note that the numerators are smdler than they were
inthe origina seriesfor A, and that there are rapidly growing denominators. Thereisasensein
which thisseriesian’t “as divergent” asthe origind one was.



Moreover, it is il dternating, so the same trick will work again (and again, and again).
Take the differences again (switching back to the series for A rather than for A/2 that he used in
thefirst step) , as before, and find that they are
a =18/8, b=81/16, g=456/32, d=23123/64, etc.

Using these, we can get yet another seriesfor A:

8 32 128 512 2048 8192

A_? 18+ 8l 456+3123_ 24894+etc

The next iteration of this process gives

A_E: 81 132 N 771 4122 +ele

16 256 2048 16384 131072

S0, telescoping a bit, and then neglecting the terms represented by the “etc.”, he dlams

5 512 2046
=—+ + +
16 2048 131072

38015

65536
= 0.580.

Thisisan example of what we now cal an “asymptoticaly convergent” series. For a
while, the partial sums seem to be converging, but then they swerve awvay from what seemed to
be the limit and diverge. Modern readers may have seen them in other contexts like Euler-
Maclaurin series, and they were of great interest to important 20" century mathematicians like G.
H. Hardy. [H]

With some more work, not shown in the article, Euler tdlls us that the series can be
shown to to have the value 0.59634739, but the editors of the Opera Omnia tell usthat thislast 9
should be a 6.

Thisisthe key result of this paper, but Euler understands that some readers might not be
convinced that he has't made any mistakes. So, he solves the same problem severd other ways.
For example, he finds diverging series for /A and log A, and finds that similar methods aso leed
toavaueof A near 0.59. He finds ways to write A and 1/A as continued fractions and evauates
those continued fractions to get till more estimates cons stent with the ones before.

One of hismore interesting solutions involves differentia equations and infinite series.
He writes

s=x- 1x? +2x° - 6x* +24x° - 120x° + etc.



and plansto evduate it in the case x = 1. Differentiaing gives

?zl- 2X + 6xx - 24x% +120x"* - etc.
X

X- S
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Euler loves differentid equations. He rewritesthisas ds +ﬂ = % solvesfor s, and
XX X

(reminding us thet e is the number whose hyperbolic logarithm equas 1, thet is e iswhat we
expect it to be) gets

Subgtituting x = 1 into the definition of s gives us our dternating hyperbolic series on the
left. On the right hand side, we see that the variable x is being over-used, typicd in the 18"
century, and the subgtitution x = 1 should only be made outsde the integrd, not indde. He gets

-1
exdx

1- 1+2- 6+12- 120+ €tc. =ec‘)
X

where the integrd is taken to be between 0 and 1. Euler applies e ementary numerica methods,
evauating the integrand at ten va ues between 0 and 1 and adding them up, and estimatesthat A
= 0.59637255, congstent with his other estimates of A, but containing some smal calculation
errors explained in the Opera Omnia.

By the end of the article, Euler has estimated A at least Six very different ways, and every
time he gets the same estimate. When such different analyses dl lead to the same conclusion, it
is easy to understand why mathematicians of Euler’ stime bdieved in the utility of interesting
numbers, and could believe that numbers “beyond infinity” might be negetive.
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