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Two weeks ago a our MAA Section meeting, George Andrews gave a nice talk about the
delicate and beautiful relations among infinite sums, infinite products and partitions. Dr. Andrews,
the Evan Pugh Professor of Mathematics at Penn State, and is known even among non
mathemdaicians for his 1976 discovery of “Ramanujan’s Lost Notebook,” a collection of 138 pages of
notes that had lain unnoticed in the archives at Trinity College, Cambridge. A nice account of the
colorful history of the “Lost Notebook” isonline at [B].

Dr. Andrews described some of the tools he uses to understand and to extend Ramanujan’s
work. They include functions cdled g-series, [W] defined and denoted by

(aq), = O 1- ad®).

k=0

One g-seriesis paticularly important, and is known among friends of Ramanujan and
Andrews as Euler’ s function:

% k
f (a)=(aia), =O(1- o).
k=1
Aswe will see (and aslong-time readers of this column have aready seen in [S 2005],) when
these products are expanded into a sum, then the coefficients of the resulting series contain
information about partitions.

This month’s column will discuss some of the tools Euler devel oped to understand the
relations among infinite products, infinite sums and combinatorics that make the work of Andrews
and Ramanujan so beautiful.

Euler danced among products, sums and combinations severa times. In [E19] he used
products to discover the Gamma function. In [E41], he linked products and sums to solve the Basdl
problem. Then in[E158] he linked sums, products and partitions to solve Philip Naudé s problem.
He touched on the connections severd other times, but rather than trace how he devel oped the idess,
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wewill ook at his unified presentation in Chapter 15 of the Introductio in analysin infinitorum
[E101], the chapter titled “On series that arise from the expansion of products.”

Let usrecall when we first learned about quadratic equations. We learned that if a product,

(x- r)(x- 9 expandsinto asum, x> +bx+ ¢, then the roots of the quadratic arer an s, that c = rs
andthab=-(r + 9).

Euler learned from adightly different book. He learned this same fact using a product of the
form (1+az)(1+bz) and aquadratic 1+ Az+ Bz*. Though this makes the roots alittle harder to
write, it makes the sums and products alittle eesier, sothat A=a +b and B=ab .

Euler opens Chapter 15 by generalizing this result to many factors. He asks usto consider the
sum and product

1+ Az+Bz°+CZ’ +etc. = (1- a z)(1- bz)(1- gz)etc. (1)
Then he explains that

A=a+b+g+d+e +z +etc. = the sum of the coefficients taken individualy
B=ab+ag+ bg+ad+ bd+ gd+ etc. =the sum of the products taken two at atime
C =the sum of the products taken three a atime,

D = the sum of the products taken four a atime,
€tc.

Euler is ddiberatdly vague about whether he means these sums and products to be finite or
infinite. Thisis partly because he, like mogt others of histime, believed in something cdled the
“Principle of Continuity.” Thiswas a philosophica principle of Leibniz, and Sated, roughly, thet if
two things are not much different, then their effects and propertieswill not be much different, ether.
[P] Letbniz captured the principle with his gphorism “Nature makes no legps.” Thus, Sncethe
relations between factors and coefficients that are true for finite sums and products should dso be
true for infinite ones.

Euler dso ignored dl issues of convergence in this discusson, unlike today when we wave
our hands and either mumble “formal power series’ or “suitable radius of convergence.”

For hisfirst example, Euler takesthe Greek lettersa, b, g, d, €tc., to be the sequence of prime
numbers, 2, 3,5, 7, 11, 13, etc. Now we'll do in three or four steps what Euler does in one step.

Congider the product
(1+22)(1+32) (1+52) (1+72) (1+112) etc.

Equation (1) and the propertiesof A, B, C, ec. tell usthat this product expandsto give



1+(2+3+5+7+11+13+€c.) z
+(2>8+2>6+3% +27 +3X +5% +etc.) 2°
+(258% +2537 +3567 + 2341 +¢etc.) 2

+ (etc.) z* +etc.

Euler takes z = 1, performs the multiplications, rearranges the terms into increasing order, and names
thewhole sum P:

P=1+2+3+5+6+7+10+11+13+14+ 15+ 17 + etc.

“in which series” hetdlsus, “al naturad numbers occur except those that are powers, and those
which are divisble by some power.” Wewould call thisthe series of “square-free” numbers, those
that are not divisble by any square number except 1.

Note that Euler isn't redly interested in the val ue of this series; rather he wants usto see the
numbers that occur in the series itself.

For his next example, he takes his coefficientsa, b, g, d, etc. to be “any power of the prime
numbers” Hisformulamakesit clear that he means the power to be negative, as he writes

P=BE+2—%]935+3—%?8§+5—%98?[+7—}%+—19aC.

€ 2% IE 5 '@ 1'p

In many ways, thisisalot like his previous example. Thisformula expands into a seriesto
gve

P :1+i+i+_1+_1+_1+i+ 1

+ €tc.
2" 3 5 6 7" 100 11

where again the denominators are based on square-free numbers. It isamore interesting example
than it s;emsto be. Firg, itistrue. For n> 1, both the series and the product converge, and they
converge to the same (finite) vaue.

Second, it is an example of the Principle of Continuity applied in reverse. We had afact
about infinite series that do not converge. The argument that convinced the reader (maybe) of that
fact ds0 gppliesto the closdly related infinite series that do converge. If the first argument convinced
us, then this argument should convince us, as wll.

Third, Euler has a plan. These examples redly are going somewhere. He's not telling us
where, though.

His next example has anew idea, but no clueswhere he'sgoing. Take the negatives of the
powers in the previous example, so that



16 16 16 16 1o
P:%- —;ﬁ- —;?' —;q'—;%-—;ac. 2
§ 236 3'p8 5'p6 7"pe 1'p @
The formulatdls usthat this expands to give
SO NS S S T T o
273 5 6 7 10 11

where the denominators again include only the square-free bases, but the Sgns are determined by the
number of prime divisors in the denominator. Those with an odd number of prime divisors, like the
primes themselves, or like 30 = 2xX3>5 , have the negative sign, but those with an even number of
divisors, like 6 =23, 10= 2> and 15= 35, have a pogdtive Sgn.

Remember these formulas. We will seethem again later.
Now we turn to quotients. Euler asks usto “now consider this expresson”

1
(1- az)(1- bz){- gz)(1- d)(1- ez)etc.”

Again he expands the quotient into a series
1+ Az+BZ* +CZ* +DZ + EZ + FZ +¢ec.
and, without explanation, tells us that

A = the sum of the coefficients taken one & atime

B = the sum of the coefficients multiplied together two at atime, possbly with
repetition

C = the sum of the coefficients multiplied together two a atime, again with repetition
dlowed

D = the sum of products taken four at atime,

etc.

Let'sfill inafew stepsthat Euler omitted, and give asmple example. Suppose there are only
two factors in the denominator, so our quotient is

1 1 1

= prd

(1-az)(1-bz) (1-az) (1- bz)

Each of the factors on the right expands into a geometric series,

=l+az+a’z’+a’zZ+a*z +edc.,
1-az

and likewise for the other factor,



1
1- bz

=1+bz+b?Z+b3Z +b*z* +ec.

We note in passing that Euler gets these geometric series identities by “actud divison” of the
quotient, and not from manipulations on the series. In other words, he finds the series given the
quotient, instead of doing what we usudly do today start with the series and find its anaytica vaue.

When we multiply together these two series, we get

1

(1-az)(1- bz) =1+(a +b)z+(aa +ab +bb)Z* +(a’ +a’b +ab”+b*)Z +etc.

We see that the coefficients A, B, C, etc., are as Euler described.

Euler’ s next example is deceptively smple. He takes aquotient with just onefactor, a =1/2
and setsz=1, to get

Note that Euler isthinking of this as expanding the quotient, not as summing the series, and that he's
interested in the terms of the series, not the vaue of the sum.

Euler proceedstothecasea =%, b = )4 anddams

L :1+£+

L 1 1,11
1- 1)(1- 3 2 3
(1-4)(1-3)

11
+ S
8 9 12 16 18

1
+=+ +€tc.,
6

1
4
where the denominators only involve numbers with no prime divisors other than 2 and 3.

This begs to be extended, so Euler tekesa, b, g, d, etc., to be the sequence of prime numbers,
2,3,5,7,11, 13, etc., and z= 1. Then he writes (by the Principle of Continuity) thet if

then

P :1+£+E+E+1+1+1+1+l+ efc.

5 6 7 8 9

Thislagt isthe harmonic series, a serieswe know diverges. Euler would say that itsvaueis In¥ . If
we write this in modern notation, using Sigmafor sums and Pi for products, we get



§1 ~ 1
an

k=1 p prime 1-

ol

the famous Sum-Product formulafor the Riemann Zetafunction. This formula has a prominent

place on the cover of William Dunham'’sbook [D] Euler: The Master of Us All. Stll, the formula
it redly true. Since the harmonic series diverges, it can't be said to have ared vaue, so itsvaue

can't redly be equd to anything dse.
Again, the Principle of Continuity has something to add. Euler goeson to tel usthat if

o o

N ) e

then, by the same cdculation,

Agan, in modern notation, thisis
k=1 k" pprimel'#

and thistime, for n>1, both the sum and the product converge, and they are equa. The sum on the
left is Riemann’s Zeta function, and thisfact is one of the fundamenta properties of the Zeta

function.
Thisis the second time Euler proved thisformula. We saw the first proof afew months ago

[S 2006] when we were looking at some results from [E72]. This proof is quite different.
This chapter of the Introductio goes on quite a bit farther, using these techniquesto caculate
vaues of particular series, but we will wrap it up with one last result, alesser-known property of the

Zetafunction.
Asbefore, take

s0 that P isthe Zetafunction

Now, take Q to bethereciproca of P, so that



Q=(1- )L #)(1- ) (- 2)(2-2) - ) e

Thisis the same product we saw in formula (2), (did you remember it like we told you to?) except it's
named Q now ingtead of P. So, we know from formulas (2) and (3) that this product expands as a
seriesto give
1 1 1
=1- — —- —+—- —+—- +
Q n n n n 7n 101 11n

From the product forms, it is completely obvious that PQ = 1, but as series, the fact is quite
remarkable.

Thereis dways something interesting to learn from the Introductio. Ramanujan appreciated
thiskind of analys's, and people like George Andrews remind us that we gtill have much to learn by
following the footsteps of Euler and Ramanujan.
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