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Euler gave us two mathematical objects now known as“gamma” Oneisafunction and the
other isa congant. The function, G(X) , generalizes the sequence of factoria numbers, and is the subject
of this month's column. A nice history of the gamma function is found in a 1959 article by Philip Davis,
[D] and ashorter oneisonlineat [Anon.]. The second gamma, denoted g, is a constant, approximately
equd to 0.577, and, if things go as planned, it will be the subject of next month’s column. In 2003,
Julian Havel wrote abook about gamma the constant. [H]

When Euler arrived in . Petersburg in 1728, Daniel Bernoulli and Chrigtian Goldbach were
dready working on problemsin the “interpolation of sequences” Their problem wasto find aformula

that “naturally expressed” a sequence of numbers. For example, the formula n® “naturally expresses’

+1)

n(n .
the sequence of square numbers, 1, 4, 9, 16, ..., and (T expresses the sequence of triangular

numbers, 1, 3, 6, 10, 15, ... . Both of these are well defined for fractiond vaues of n, so they were said
to inter pol ate the sequences.

Earlier mathematicians including Thomas Harriot and 1saac Newton had developed an extensve
cdculus of finite differences to help find formulas that matched various sequences of vaues, and their
work helped lead to the invention of calculus. In fact, one way to understand the discovery of
logarithms is that they resulted from the interpolation of geometric series.

Bernoulli and Goldbach were sumped trying to interpolate two particular sequences. Thefirst
was the segquence we now call the factorid numbers, 1, 2, 6, 24, 120, 720, etc. They caled it the
“hypergeometric progresson.” The second was the sequence of partia sums of the harmonic series, 1,
1+1, 1+1+1 etc.

Shortly after helearned of the problems, Euler solved both of them. This month we are interested
in his solution of the firgt one, in which he showed us how to give meaning to expressons like (2%)! , 85
anaturd interpolation between 2! =2 and 3! = 6.

Euler announced his solution in aletter to Christian Goldbach dated October 13, 1729. He began
his letter, “Mogt Celebrated Sir: | have been thinking about the laws by which a series may be



interpolated. ... The most Celebrated [Danidl] Bernoulli suggested that | writeto you.” Hegoeson to
proclaim that the general term of the “series’ 1, 2, 6, 24, 120, etc. (at the time, people used the words
series, sequence and progression interchangegbly) is given by
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Thereisasubtle reason that Euler used the form given in (1) rather than the more “obvious’ form
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The reason involves absolute convergence of infinite products, and something caled “Gauss's
criterion.” Infact, (1) converges asit iswritten, asthe limit of its partia products, but to make (2)
converge, we must interpret it as
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or esethe limit will be zero. We won't go into details here, but instead refer the reader to Walker [W].
Euler clearly knew that something like Gauss s criterion was necessary when he made his definition, but
then he doesn't use the criterion much in his expostion.

Euler’ s expogtion in the letter of October 1729 is very brief, but he gave more details and
consequences in an article, De progress onibus transcendentibus, seu quarum termini generdes
agebraice dari nequeunt, “ On transcendenta progressions, or those for which the general term is not
gven dgebraicaly.” [E19] Inthe article hetells us, without doing the cdculations, thet if nisO or 1,
then the product is 1. For n equd to 2 and 3, he gives us alittle more, telling us that
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xetc., which he says equas 2,

250x2 35353 4344 5%
X4 2056 336 447

>etc. , which equals 6.

As amore complicated example, Euler takes m = ¥4 and gets an infinite product:
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This, inturn, equas
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It seems hopelessto try to evauate (4), but even at age 22, Euler has read a grest dedl of the
mathematical literature. In particular, he knew that in 1665, John Wallis had found that
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From this, it is not hard to find that the vadue givenin (4) is & Philip Davis[D] speculates

that Euler recognized a connection between p and areas and integration. Then, when he saw that the
vaue of hisinfinite product involved p , he thought to try to rewrite the infinite product as an integrd.
After agood ded of work, described in detail bothin [D] and in [S], he finds that his infinite product
equas
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and that this, too, iswell defined for fractiond vaues of n aswell asfor negative values of n that are not
integers.

Near the end of the paper, Euler proposes an “gpplication”, though he admits that the example
might not be very ussful. He writes:

“To round off this discusson, le me add something which cetanly is

more curious than useful. It is known that d"x denotes the differentid of
x of order n and if p denotes any function of x and dx is taken to be
congtant then ... the ratio of d "p to dx" can be expressed dgebraicaly. ...
We now ask, if n is a fractiond number, what the vaue of tha ratio
should be.”

Euler is proposing that we use his new function to find what we now cal “fractiond
derivatives’, and he gives us some examples. For this, we will use modern notation, and use what we

now call the gamma function, denoted G(x) . We note that if X is a non-negative integer, then
G(x+ 1) =x!. Let'shave alook at some of the eementary properties of k-th derivatives of x" and watch
for a pattern:

firg derivaive nx"t,
second derivative n(n- 1)x™?,
third derivative n(n-1)(n- 2)x"*,
. . n-k _ n! n- k
k-th derivative n(n-1)(n- 2)--(n- k+1)x _(n- ) NG

where we have to be allittle careful that k < n so that n — k > 0 and so (n — k)! will be defined. This
problem goes away if k isnot an integer.

Armed with the gamma function, now we can define the k-th derivative even if k isafraction, as
follows
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k-th derivativeof x" is — X",
G(n- k+1)
or, more like the way Euler wroteit,
1
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where, to Euler, eisjust an exponent, and does not yet have today’ s connotations as a specia constant.

Usang thisidea, Euler takesn = 1 and k = %4, to find that the 2-th derivative of x is
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Euler does not take this any farther, but it is easy for usto see at least oneway to doit. If we
would like to take fractiondl derivatives of some more complicated function f (x), then we can try to

take the Taylor seriesfor f, and apply Euler’ sfractiond derivative formulato each term. Readerswith
the kills and the software are encouraged to experiment with this with their favorite mathemetical
software like Maple ™ or Mathematica. ™ One good place to start might be to take a polynomid like

f(x)=(x- 1)(x- 2)(x- 3)(x- 4)(x- 5) and build an animation of the graph of itsk-th derivatives, say
for x between 0 and 6, as k increases from 0 to 5. We know that f itsdf has 5 roots, itsfirst derivative

has 4, its second has 3, etc. It isinteresting to watch what happens to the roots as k increases, until, after
five derivatives, al the roots disappesr.

Trigonometric functions, like f (x) =sinx are dso interesting.

Readers who know about the properties of Fourier series and Laplace transforms may know that
they, too, can be used to define fractiona derivatives.
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