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When an interegting illustration catches our eye, we sometimes stop to figure out whet it is. But
when | first saw thisillugtration | wasin ahurry. | resolved to come back to it "later.” Now that later
has findly arrived, I'm glad | remembered to go back.

The picture that caught my eye was the squarishlooking spiral below. 1t was part of the
Summarium of [E275], "Notes on a certain passage of Descartes for looking at the quadrature of the
crde”" The Summariumisasummary of an article, usudly written by the editor of the journd, that is
printed at the beginning of the volume. Thistime, the Summarium was four pages long, and the article
itsdf was twelve,

o

The Summarium gives us a bit of history thet is not indluded in the artidle itsdlf. The Editor tells
us that "the circumference of acircle isincommensurable with its diameter,” or, as we would say it now,
pisanirrationa number. He goeson to tell usthat Archimedes approximated theratio as 7 to 22 and
Metius gave us 113 to 355.




A bit later, and with only this discusson of Archimedes and Metius as motivation, the Editor
asks usto let g be "the length of the quadrant of a circle whose radiusis equd to 1," what we would

denote%.Then
—secl >eec1 >eec1 ><aeci >eeci *etc.
a 2q 4q 8q 16q 32q

A minute with Maple® confirmsthis, at least to ten decimal places, and the Editor leads usto believe
that the illugtration should help to convince usthat it istrue. There is no mention of Descartesin the
Summarium.

Euler beginsthe article itself describing a very different congtruction and with a different
illugration. Hetells usthat the method is due to Descartes and that it "indicates brilliantly the insghtful
character of its discoverer."™ Aswe go through Descartes congtruction, it is helpful to note that
Descartes describes a rectangle or a square by telling us two diagondly opposite corners of the shape.
o, in the figure below, he cdls the large square bf, and the rectangle next to it is cg.
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Using the figure above, Descartes gives a procedure that begins with the length ab and the square
on that length, bf. Then he congtructs anew length ax. He clams (and Euler agrees) that the length ax
formsthe diameter of a circle that has the same circumference as the square bf. Hence, if ab = 1,

thenax = 54 , about 1.2732. Here's how the construction works.

Take ao to be theray containing the diagond of square bf. Beside this, congtruct rectangle cg so
that its areais Yathe area of square bf, and o that its (unnamed) corner lieson theray ao.

Beside this, congtruct another rectangle dh, with its area s the area of rectangle bf, and again
with its corner on theray ao.

! Here and elsewhere, when we quote from the text of E275, we usually follow the translation of Jordan Bell, available at
EulerArchive.org and at the arXiv. Thank you, Jordan, for your many fine translations of Euler'swork.
2



Continue congtructing rectangles, each with ¥ the area of the previous one, and each with its
corner on theray. It iseasy to seethat the sum of the bases of these rectangles,

ab+bc+cd+de+---

converges to some length, cdl it ax, but it is not so easy to see how ax is related to ab, or how this has
anything to do with the circumference of acircle. Descartes, in the style of histimes, doesn't tell us.
Euler, though, sets out to proveit, and he shares the details of his proof with us.

But firgt, Euler proposes to solve the following:
PROBLEM

Given a circle around which a regular polygon is circumscribed, to find
another circle, about which if a regular polygon with twice as many sides
is circumscribed, the perimeter of the first polygon will be equal to the
perimeter of the second one.

It isnot yet clear what this has to do with Descartes congtruction, or with the product of secants
and the squarish spird we saw in the Summarium, but those of us who remember how Archimedes
approximated p as 22/7 will recognize how this problem isreated to the value of p. Euler usesthe
figure below to solve his problem.
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Here, MNE isan arc of thefirg circle. That circle has center C and radius CE. The segment PE
ishdf of one sde of thefirg polygon, circumscribed about MNE.

The new circlewill belarger than the original one, so if we let CF be the radius of the new circle,
we will have CE < CF.

Let FQ be ahalf-sde of the new polygon. Since the new polygon has the same circumference,
but twice as many sdes asthe origind, wehave EP =2 FQ. Likewise, DECP =2 DFCQ.

Let O be the midpoint of PE. Then QO || EF. Also, let V be the point where the radius CQ
intersects PE. Notethat V is between O and E, that isto say, EV < EO = %2 PE.



Now Euler leads us through some triangle geometry. Some steps are easy, but one involves
knowing something thet is largely forgotten today.

Firg, EV : CE = FQ : CF because ?CEV ~ ?CFQ. That was easy.

Second, EV : CE=EP: CE + CP. Thisisnot o easy. Heréshow | figured it out. | compared
?PCE with VCE. Recdll that DVCE =Y2DPCE. | saw that theratiosCE : EV, CE: EPand CP: EP
involved cotangents and cosecants of these angles, so | looked up the haf-angle formulafor cotangent
and found it to be

cot% = cotq + secq.

| think it wasthefirg timein my life that 1'd ever used the haf angle formulafor cotangents, but | thank
my high school geometry teacher, Ken Solem, for teaching me that there is one, so I'd know to look it up
when | needed it. There may be asmpler way, but this was quick.

Third, by combining the first two steps, we get FQ : CF=EP: CE + CP.

Because FQ = %2 CF, thislast proportion tells us that

CF :%(CE +CP).
Subtracting CE from both sides gives

EF =%(CP- CE)

Multiplying these last two together gives

CF xEF = E(c:P2 - CE?)
4
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Thefirg equdlity isjust dgebra and the second line is an gpplication of the Pythagorean theorem to the
right triangle CEP.

This solves Euler's problem because the point F is now defined so that the rectangle with sdes
CF and EF has asits area one-fourth the area of the rectangle with sdes EP and FQ. That, in turn, equas
the area of the square with sides FQ.

Thisresult isalittle awkward to use, so Euler "cleansit up" with four corollaries

Corollary 1: BecauseCF EF = FQ?, wehaveCF : FQ = FQ : EF . This meanswe have Smilar
triangles CFQ ™ FQE, so that DFCQ = BDFQE.



Corollary 22 From Corollary 1, CE : EV = EO : EF, so that point F can be defined by drawing
from the point O a gtraight line perpendicular to the line CV extended, and finding where that new line
intersects the base line CE.

Coradlary 3:  If the polygon circumscribing circle ENM has n sides, thenDECP = Bn ,
andE)FCQ:%. I we let the radius CE = r, then

EP:rtanB and FQzlrtanB.
n 2 n

Corollary 40 Because BDFQE = %

EF = FOtan 2 = LrtanP tan .
2n 2 n 2n

If welet CF = s, then we have

_ p
FQ = stan—,
Q 2n
and because
FQ:—rtanB,
n
we have
szlrtanBcotﬂ.
2 n 2n

Thus, we have adirect means of finding the length CF from the origind length CE and the
number of Sdesn.

Now Euler isready to prove that Descartes construction does whet is claimed. Thisrequiresa
new figure




Here, we let CE be the radius of acircleinscribed in a square, CF that of an octagon, CG of a
hexadecagon, CH, etc., and let EP, FQ, GR, HS be the corresponding haf-sides. Aswe saw before,

FQ=2EP, GR=FQ=XEP, HS=iGR=1FQ=1EP, «ac
2 2 4 2 4 8

From the preceding problem,
1

CF >EF = ZEP2 = FQ2.
Smilaly,
CGxFG :%FQ2 = %CF xEF =GR,
CH>GH = %GR2 = %CGXFG =HS’, etc.

With the points F, G, H, etc. determined in thisway, we get Descartes construction. Moreover, the
pointsE, F, G, H, etc. "ultimately approach” the point x, the radius Cx will be the radius of the circle the
circumference of which is agpproached by the corresponding polygons.

Thus, the congtruction of Descartesis proved. The construction leads to a means of
approximating p that Euler describes in another coradllary:

Cordllary 1.  If wetake CE=a, CF=h, CG=c, CH =d, etc., we have EP = a, and we get the
recursive sequence

b(b-a)=%aa, c(c-b):%b(b-a), d(d-c):%c(c- b), etc.

From this, quadratic formula gives us

b_a+«/2aa C_b+\/2bb- ab d_c+«/2cc-bc eic
2 ) ——2 ) _f’ .

and these quantities, taken to infinity, give the radius of the circle with perimeter equd to 8a.
Indeed, if wetake a = 1, then the first severd vaues of this sequence are

a =1.00000
b=1.20711
c=1.25683
d = 1.26915
e=1.27222
f=127298
g=1.27318

and these seem to be converging towards the required value of 4/p~ 1.27323954. Indeed, they agree to
these eight decimal places on the 14th step (taking a = 1 as step 1).



Let us pause to take stock of what has happened so far in thisarticle. Itstitle promised that we
would learn about a method of Descartes for approximating p. We have done that. However, the
Summarium, aswdl asthetitle | chose for the column, advertised an infinite product of secants. We
haven't seen such an infinite product, nor have we seen anything of that spird illugtration that caught my
eyeinthefirg place. It'stime to see what we can do about that. Euler begins anew problem.

PROBLEM

Taking ) tobeany arcof acircleof radius 1, to find the sum of the
infinite series
tanj +1tanij +1tan1j +1tan1j +itanij + etc.
2 2 4 4 8 8 16 16
To solve this problem, Euler brings back the figure from hisfirst problem. Thistime helets

PECP =] beany angle, and DFCQ = 1j . Hescaleshisdrawing so that FQ = 1, which makes EP = 2.
Then CE = 2cotj , CF =cot$j and EF =tan3j . Thislast formulareguiresthet we recal from
Corollary 1 of thefirg problem that ? FQE ™ ? FCQ. Now CE = CF —EF, so

2cotj =cot3j -tangj and tanij =cotsj - 2cotj .
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Inthesameway, tanj =cotj - 2cot2j .We can gpply these identitiesto get every term of the seriesin
the problem, and we find that

tanj =cotj - 2cot? ,
stan3j =3cot3j - cotj,
atangj =gcotgj - jcotg
stangj =+cotsj - zcotsj ,

etc.

Bravely adding both sides of these together, and in characteristic Eulerian form, taking n to be an
infinite number, we see that on the left we get exactly the series we are trying to sum, and on theright a
riot of cancellation from which the only termsthat survive are



-2cot? +1cot1j .
n n

The second term is subject to I'HOpita's rule, and becomes just 1 s0 the sum of Euler's series and the
J
solution to the latest problem is
_l- 2cotg .
J

From here, Euler gives afew different paths to his product of secants. WEIl describe my
favorite. Start with

tan; +£tan1j +1tan1j +1tan1j ++itanij +L :_1- 2cot? .
2 2 4 4 8 8 16 16 J
Integrate both sdesto get

- Incosj - Incosij - Incoslj - Incosij - Incosij -L =Inj - Insn2j +Const.
2 4 8 16

Takingj =0 leadsto finding that the congantisin2. Also, - Incosg = Insecq, 0, by the laws of
logarithms we get

1 __ 3
. 1 1 1 1. singd
COS] XCOS—|] XCOS—] XCOS—] XCOS—] -
2 4 8 16
or, what amounts to the same thing,
. 1. 1 1 1. 2
SEC] >8eC—| >8eC—] *SeC—j >6eC—j %+ =— .
2 4 8 16 sing

The product given in the Summarium is the specid case of thisformulawherej = % .

And what does Euler say of the pretty spird that started it dl? Nothing. Heleavesthat to us.
Take AB = OB = 1. Then we might begin by noting thet 270BC isaright triangleand DBOC = % . S0,

oc _ sec . Since OB = 1, thismakes OC = sec?
OB 4 4
. , _p OD_ p
Then 20CD isaright triangleand BDCOD = s So oc secg. We know OC from the

previous step. The result follows by repeating this process infinitely many times.



S0, apretty picture leads to a pleasing result.
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